Journal Home > Volume 11 , Issue 10

Stimuli-triggered targeting of drug delivery systems can both increase the therapeutic efficacy and lower toxicity by selectively delivering drugs at target sites with high specificity and efficiency. Light is a convenient and powerful stimulus for use in such drug delivery systems because it is readily available and noninvasive and offers excellent spatiotemporal control. The power and wavelength of light can be finely tuned for different photoresponsive systems to achieve efficient targeting at the tissue, cellular, or subcellular levels. Here, we have reviewed the various mechanisms for phototriggered targeting (phototargeting) of drug nanocarriers. We have discussed the three main phototargeting strategies: (1) targeting ligand activation; (2) particle size reduction; and (3) blood vessel disruption.


menu
Abstract
Full text
Outline
About this article

Phototriggered targeting of nanocarriers for drug delivery

Show Author's information Yafei Li1,2Yaming Zhang1,2Weiping Wang1,2( )
Dr. Li Dak-Sum Research CentreThe University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong KongHong KongChina
Department of Pharmacology and PharmacyLi Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina

Abstract

Stimuli-triggered targeting of drug delivery systems can both increase the therapeutic efficacy and lower toxicity by selectively delivering drugs at target sites with high specificity and efficiency. Light is a convenient and powerful stimulus for use in such drug delivery systems because it is readily available and noninvasive and offers excellent spatiotemporal control. The power and wavelength of light can be finely tuned for different photoresponsive systems to achieve efficient targeting at the tissue, cellular, or subcellular levels. Here, we have reviewed the various mechanisms for phototriggered targeting (phototargeting) of drug nanocarriers. We have discussed the three main phototargeting strategies: (1) targeting ligand activation; (2) particle size reduction; and (3) blood vessel disruption.

Keywords: photocleavable groups, photorelease, photoresponsive nanoparticles, phototargeting, stimuli-responsive drug delivery, targeted drug delivery

References(104)

1

Park, K. Controlled drug delivery systems: Past forward and future back. J. Control. Release 2014, 190, 3–8.

2

Davis, M. E.; Chen, Z.; Shin, D. M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782.

3

Helfand, W. H.; Cowen, D. L. Evolution of pharmaceutical oral dosage forms. Pharm. Hist. 1983, 25, 3–18.

4

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

5

Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

6

Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 2015, 91, 3–6.

7

Kobayashi, H.; Watanabe, R.; Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013, 4, 81–89.

8

Verhoef, J. J. F.; Anchordoquy, T. J. Questioning the use of PEG ylation for drug delivery. Drug Deliv. Transl. Res. 2013, 3, 499–503.

9

Yang, Q.; Lai, S. K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 655–677.

10

Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2002, 2, 750–763.

11

Mi, Y.; Liu, Y. T.; Feng, S. S. Formulation of docetaxel by folic acid-conjugated D-α-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy. Biomaterials 2011, 32, 4058–4066.

12

Wang, J.; Liu, Q.; Zhang, Y. T.; Shi, H.; Liu, H.; Guo, W. J.; Ma, Y. H.; Huang, W. Q.; Hong, Z. Y. Folic acidconjugated pyropheophorbide a as the photosensitizer tested for in vivo targeted photodynamic therapy. J. Pharm. Sci. 2017, 106, 1482–1489.

13

Danhier, F.; Le Breton, A.; Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm. 2012, 9, 2961–2973.

14

Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000, 41, 147–162.

15

Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90–99.

16

Shuhendler, A. J.; Prasad, P.; Leung, M.; Rauth, A. M.; DaCosta, R. S.; Wu, X. Y. A novel solid lipid nanoparticle formulation for active targeting to tumor αvβ3 integrin receptors reveals cyclic RGD as a double-edged sword. Adv. Healthc. Mater. 2012, 1, 600–608.

17

Dvir, T.; Banghart, M. R.; Timko, B. P.; Langer, R.; Kohane, D. S. Photo-targeted nanoparticles. Nano Lett. 2010, 10, 250–254.

18

Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340–7364.

19

Arrue, L.; Ratjen, L. Internal targeting and external control: Phototriggered targeting in nanomedicine. ChemMedChem 2017, 12, 1908–1916.

20

Wang, Y. F.; Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2017, 2, 17020.

21

Wang, S.; Huang, P.; Chen, X. Y. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano 2016, 10, 2991–2994.

22

Lee, E. S.; Gao, Z. G.; Kim, D.; Park, K.; Kwon, I. C.; Bae, Y. H. Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. J. Control. Release 2008, 129, 228–236.

23

Zhan, C. Y.; Wang, W. P.; Santamaria, C.; Wang, B.; Rwei, A.; Timko, B. P.; Kohane, D. S. Ultrasensitive phototriggered local anesthesia. Nano Lett. 2017, 17, 660–665.

24

Rwei, A. Y.; Paris, J. L.; Wang, B.; Wang, W. P.; Axon, C. D.; Vallet-Regí, M.; Langer, R.; Kohane, D. S. Ultrasound-triggered local anaesthesia. Nat. Biomed. Eng. 2017, 1, 644–653.

25

Meyer, D. E.; Shin, B. C.; Kong, G. A.; Dewhirst, M. W.; Chilkoti, A. Drug targeting using thermally responsive polymers and local hyperthermia. J. Control. Release 2001, 74, 213–224.

26

Dugan, A.; Majmudar, C. Y.; Pricer, R.; Niessen, S.; Lancia, J. K.; Fung, H. Y. H.; Cravatt, B. F.; Mapp, A. K. Discovery of enzymatic targets of transcriptional activators via in vivo covalent chemical capture. J. Am. Chem. Soc. 2016, 138, 12629–12635.

27

Tian, X.; Zhang, L. C.; Yang, M.; Bai, L.; Dai, Y. H.; Yu, Z. Q.; Pan, Y. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1476.

28

Li, J. J.; Li, Y. F.; Wang, Y. H.; Ke, W. D.; Chen, W. J.; Wang, W. P.; Ge, Z. S. Polymer prodrug-based nanoreactors activated by tumor acidity for orchestrated oxidation/chemotherapy. Nano Lett. 2017, 17, 6983–6990.

29

Font, J.; López-Cano, M.; Notartomaso, S.; Scarselli, P.; Di Pietro, P.; Bresolí-Obach, R.; Battaglia, G.; Malhaire, F.; Rovira, X.; Catena, J. et al. Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator. eLife 2017, 6, e23545.

30

Lv, W.; Zhang, Z.; Zhang, K. Y.; Yang, H. R.; Liu, S. J.; Xu, A. Q.; Guo, S.; Zhao, Q.; Huang, W. A mitochondriatargeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angew. Chem., Int. Ed. 2016, 55, 9947–9951.

31

Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martin Rodríguez, E.; García Solé, J. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.

32

Yu, H. T.; Li, J. B.; Wu, D. D.; Qiu, Z. J.; Zhang, Y. Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 2010, 39, 464–473.

33

Fomina, N.; Sankaranarayanan, J.; Almutairi, A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev. 2012, 64, 1005–1020.

34

Gohy, J. F.; Zhao, Y. Photo-responsive block copolymer micelles: Design and behavior. Chem. Soc. Rev. 2013, 42, 7117–7129.

35

Barhoumi, A.; Liu, Q.; Kohane, D. S. Ultraviolet lightmediated drug delivery: Principles, applications, and challenges. J. Control. Release 2015, 219, 31–42.

36

Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.

37

Rwei, A. Y.; Wang, W. P.; Kohane, D. S. Photoresponsive nanoparticles for drug delivery. Nano Today 2015, 10, 451–467.

38

Wang, W. P.; Liu, Q.; Zhan, C. Y.; Barhoumi, A.; Yang, T. S.; Wylie, R. G.; Armstrong, P. A.; Kohane, D. S. Efficient triplet-triplet annihilation-based upconversion for nanoparticle phototargeting. Nano Lett. 2015, 15, 6332–6338.

39

Tong, R.; Hemmati, H. D.; Langer, R.; Kohane, D. S. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc. 2012, 134, 8848–8855.

40

Sano, K.; Nakajima, T.; Choyke, P. L.; Kobayashi, H. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors. ACS Nano 2013, 7, 717–724.

41

Gormley, A. J.; Larson, N.; Sadekar, S.; Robinson, R.; Ray, A.; Ghandehari, H. Guided delivery of polymer therapeutics using plasmonic photothermal therapy. Nano Today 2012, 7, 158–167.

42

Klán, P.; Šolomek, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremovable protecting groups in chemistry and biology: Reaction mechanisms and efficacy. Chem. Rev. 2013, 113, 119–191.

43

Han, G.; Mokari, T.; Ajo-Franklin, C.; Cohen, B. E. Caged quantum dots. J. Am. Chem. Soc. 2008, 130, 15811–15813.

44

Han, G.; You, C. C.; Kim, B. J.; Turingan, R. S.; Forbes, N. S.; Martin, C. T.; Rotello, V. M. Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew. Chem., Int. Ed. 2006, 118, 3237–3241.

45

Lin, Q. N.; Huang, Q.; Li, C. Y.; Bao, C. Y.; Liu, Z. Z.; Li, F. Y.; Zhu, L. Y. Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one-or two-photon process. J. Am. Chem. Soc. 2010, 132, 10645–10647.

46

Lin, Q. N.; Bao, C. Y.; Cheng, S. Y.; Yang, Y. L.; Ji, W.; Zhu, L. Y. Target-activated coumarin phototriggers specifically switch on fluorescence and photocleavage upon bonding to thiol-bearing protein. J. Am. Chem. Soc. 2012, 134, 5052–5055.

47

Fan, N. C.; Cheng, F. Y.; Ho, J. A. A.; Yeh, C. S. Photocontrolled targeted drug delivery: Photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew. Chem., Int. Ed. 2012, 51, 8806–8810.

48

Yang, R.; Wei, T.; Goldberg, H.; Wang, W. P.; Cullion, K.; Kohane, D. S. Getting drugs across biological barriers. Adv. Mater. 2017, 29, 1606596.

49

Yang, Y.; Yang, Y. F.; Xie, X. Y.; Cai, X. S.; Mei, X. G. Preparation and characterization of photo-responsive cellpenetrating peptide-mediated nanostructured lipid carrier. J. Drug Target. 2014, 22, 891–900.

50

Shamay, Y.; Adar, L.; Ashkenasy, G.; David, A. Light induced drug delivery into cancer cells. Biomaterials 2011, 32, 1377–1386.

51

Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317.

52

Fournier, L.; Gauron, C.; Xu, L. J.; Aujard, I.; Le Saux, T.; Gagey-Eilstein, N.; Maurin, S.; Dubruille, S.; Baudin, J. B.; Bensimon, D. et al. A blue-absorbing photolabile protecting group for in vivo chromatically orthogonal photoactivation. ACS Chem. Biol. 2013, 8, 1528–1536.

53

Herzig, L. M.; Elamri, I.; Schwalbe, H.; Wachtveitl, J. Light-induced antibiotic release from a coumarin-caged compound on the ultrafast timescale. Phys. Chem. Chem. Phys. 2017, 19, 14835–14844.

54

Pavlovic, I.; Thakor, D. T.; Vargas, J. R.; McKinlay, C. J.; Hauke, S.; Anstaett, P.; Camuna, R. C.; Bigler, L.; Gasser, G.; Schultz, C. et al. Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces pH-domain translocation in cellulo. Nat. Commun. 2016, 7, 10622.

55

Olson, J. P.; Kwon, H. B.; Takasaki, K. T.; Chiu, C. Q.; Higley, M. J.; Sabatini, B. L.; Ellis-Davies, G. C. R. Optically selective two-photon uncaging of glutamate at 900 nm. J. Am. Chem. Soc. 2013, 135, 5954–5957.

56

Bochet, C. G. Photolabile protecting groups and linkers. J. Chem. Soc., Perkin Trans. 1 2002, 125–142.

57

Xie, X. Y.; Yang, Y. F.; Yang, Y.; Mei, X. G. Photolabilecaged peptide-conjugated liposomes for siRNA delivery. J. Drug Target. 2015, 23, 789–799.

58

Yang, Y. F.; Xie, X. Y.; Yang, Y.; Zhang, H.; Mei, X. G. Photo-responsive and NGR-mediated multifunctional nanostructured lipid carrier for tumor-specific therapy. J. Pharm. Sci. 2015, 104, 1328–1339.

59

Yang, Y.; Yang, Y. F.; Xie, X. Y.; Cai, X. S.; Wang, Z. Y.; Gong, W.; Zhang, H.; Li, Y.; Mei, X. G. A near-infrared two-photon-sensitive peptide-mediated liposomal delivery system. Colloids Surf. B 2015, 128, 427–438.

60

Yang, Y.; Yang, Y. F.; Xie, X. Y.; Wang, Z. Y.; Gong, W.; Zhang, H.; Li, Y.; Yu, F. L.; Li, Z. P.; Mei, X. G. Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. Biomaterials 2015, 48, 84–96.

61

Xie, X. Y.; Yang, Y. F.; Yang, Y.; Zhang, H.; Li, Y.; Mei, X. G. A photo-responsive peptide-and asparagine–glycine–arginine (NGR) peptide-mediated liposomal delivery system. Drug Deliv. 2016, 23, 2445–2456.

62

Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940.

63

Gu, M.; Gan, X. S.; Kisteman, A.; Xu, M. G. Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media. Appl. Phys. Lett. 2000, 77, 1551–1553.

64

Shen, J.; Chen, G. Y.; Ohulchanskyy, T. Y.; Kesseli, S. J.; Buchholz, S.; Li, Z. P.; Prasad, P. N.; Han, G. Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4: Yb, Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. Small 2013, 9, 3213–3217.

65

Zhao, L. Z.; Peng, J. J.; Huang, Q.; Li, C. Y.; Chen, M.; Sun, Y.; Lin, Q. N.; Zhu, L. Y.; Li, F. Y. Near-infrared photoregulated drug release in living tumor tissue via yolkshell upconversion nanocages. Adv. Funct. Mater. 2014, 24, 363–371.

66

Askes, S. H. C.; Bahreman, A.; Bonnet, S. Activation of a photodissociative ruthenium complex by triplet-triplet annihilation upconversion in liposomes. Angew. Chem., Int. Ed. 2014, 53, 1029–1033.

67

Chien, Y. H.; Chou, Y. L.; Wang, S. W.; Hung, S. T.; Liau, M. C.; Chao, Y. J.; Su, C. H.; Yeh, C. S. Near-infrared light photocontrolled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo. ACS Nano 2013, 7, 8516–8528.

68

Hansen, M. B.; van Gaal, E.; Minten, I.; Storm, G.; van Hest, J. C. M.; Löwik, D. W. P. M. Constrained and UV-activatable cell-penetrating peptides for intracellular delivery of liposomes. J. Control. Release 2012, 164, 87–94.

69

Yuan, Z. F.; Zhao, D.; Yi, X. Q.; Zhuo, R. X.; Li, F. Steric protected and illumination-activated tumor targeting accessory for endowing drug-delivery systems with tumor selectivity. Adv. Funct. Mater. 2014, 24, 1799–1807.

70

Liu, Q.; Wang, W. P.; Zhan, C. Y.; Yang, T. S.; Kohane, D. S. Enhanced precision of nanoparticle phototargeting in vivo at a safe irradiance. Nano Lett. 2016, 16, 4516–4520.

71

Yang, Y.; Xie, X. Y.; Yang, Y. F.; Li, Z. P.; Yu, F. L.; Gong, W.; Li, Y.; Zhang, H.; Wang, Z. Y.; Mei, X. G. Polymer nanoparticles modified with photo-and pH-dual-responsive polypeptides for enhanced and targeted cancer therapy. Mol. Pharm. 2016, 13, 1508–1519.

72

Wang, J.; Shen, H. J.; Huang, C.; Ma, Q. Q.; Tan, Y. N.; Jiang, F. L.; Ma, C.; Yuan, Q. Highly efficient and multidimensional extraction of targets from complex matrices using aptamerdriven recognition. Nano Res. 2017, 10, 145–156.

73

Li, L. L.; Tong, R.; Chu, H. H.; Wang, W. P.; Langer, R.; Kohane, D. S. Aptamer photoregulation in vivo. Proc. Natl. Acad. Sci. USA 2014, 111, 17099–17103.

74

Yang, Y.; Liu, J. J.; Sun, X. Q.; Feng, L. Z.; Zhu, W. W.; Liu, Z.; Chen, M. W. Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Res. 2016, 9, 139–148.

75

Barhoumi, A.; Wang, W. P.; Zurakowski, D.; Langer, R. S.; Kohane, D. S. Photothermally targeted thermosensitive polymer-masked nanoparticles. Nano Lett. 2014, 14, 3697–3701.

76

Li, J.; Sun, C. Y.; Tao, W.; Cao, Z. Y.; Qian, H. S.; Yang, X. Z.; Wang, J. Photoinduced PEG deshielding from ROSsensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery. Biomaterials 2018, 170, 147–155.

77

He, C. B.; Hu, Y. P.; Yin, L. C.; Tang, C.; Yin, C. H. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666.

78

Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815–823.

79

Tong, R.; Chiang, H. H.; Kohane, D. S. Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proc. Natl. Acad. Sci. USA 2013, 110, 19048–19053.

80

Tacar, O.; Sriamornsak, P.; Dass, C. R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170.

81

Qiu, L. P.; Chen, T.; Öçsoysoy, I.; Yasun, E.; Wu, C. C.; Zhu, G. Z.; You, M. X.; Han, D.; Jiang, J. H.; Yu, R. Q. et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett. 2015, 15, 457–463.

82

Ojha, T.; Pathak, V.; Shi, Y.; Hennink, W. E.; Moonen, C. T. W.; Storm, G.; Kiessling, F.; Lammers, T. Pharmacological and physical vessel modulation strategies to improve EPRmediated drug targeting to tumors. Adv. Drug Deliv. Rev. 2017, 119, 44–60.

83

Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Int. 1998, 90, 889–905.

84

Zhen, Z. P.; Tang, W.; Chuang, Y. J.; Todd, T.; Zhang, W. Z.; Lin, X.; Niu, G.; Liu, G.; Wang, L. C.; Pan, Z. W. et al. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano 2014, 8, 6004–6013.

85

Gao, W. D.; Wang, Z. H.; Lv, L. W.; Yin, D. Y.; Chen, D.; Han, Z. H.; Ma, Y.; Zhang, M.; Yang, M.; Gu, Y. Q. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 2016, 6, 1131–1144.

86

Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L. T.; Choyke, P. L.; Kobayashi, H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011, 17, 1685–1691.

87

Kong, G.; Braun, R. D.; Dewhirst, M. W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res. 2001, 61, 3027–3032.

88

Gormley, A. J.; Larson, N.; Banisadr, A.; Robinson, R.; Frazier, N.; Ray, A.; Ghandehari, H. Plasmonic photothermal therapy increases the tumor mass penetration of HPMA copolymers. J. Control. Release 2013, 166, 130–138.

89

Frazier, N.; Robinson, R.; Ray, A.; Ghandehari, H. Effects of heating temperature and duration by gold nanorod mediated plasmonic photothermal therapy on copolymer accumulation in tumor tissue. Mol. Pharm. 2015, 12, 1605–1614.

90

Velema, W. A.; Szymanski, W.; Feringa, B. L. Photopharmacology: Beyond proof of principle. J. Am. Chem. Soc. 2014, 136, 2178–2191.

91

Lal, S.; Clare, S. E.; Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008, 41, 1842–1851.

92

Yang, Y. M.; Mu, J.; Xing, B. G. Photoactivated drug delivery and bioimaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1408.

93

Fournier, L.; Aujard, I.; Le Saux, T.; Maurin, S.; Beaupierre, S.; Baudin, J. B.; Jullien, L. Coumarinylmethyl caging groups with redshifted absorption. Chem. —Eur. J. 2013, 19, 17494–17507.

94

Gandioso, A.; Cano, M.; Massaguer, A.; Marchán, V. A green light-triggerable RGD peptide for photocontrolled targeted drug delivery: Synthesis and photolysis studies. J. Org. Chem. 2016, 81, 11556–11564.

95

Huang, L.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J. Y.; Han, G. Expanding anti-stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew. Chem., Int. Ed. 2017, 56, 14400–14404.

96

Liu, X. S.; Chen, Y. J.; Li, H.; Huang, N.; Jin, Q.; Ren, K. F.; Ji, J. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 2013, 7, 6244–6257.

97

Shiraishi, Y.; Tanaka, K.; Shirakawa, E.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Light-triggered selfassembly of gold nanoparticles based on photoisomerization of spirothiopyran. Angew. Chem., Int. Ed. 2013, 52, 8304–8308.

98

Au, K. M.; Chen, M.; Armes, S. P.; Zheng, N. F. Near-infrared light-triggered irreversible aggregation of poly(oligo(ethylene glycol) methacrylate)-stabilised polypyrrole nanoparticles under biologically relevant conditions. Chem. Commun. 2013, 49, 10525–10527.

99

Klinger, D.; Landfester, K. Photo-sensitive pmma microgels: Light-triggered swelling and degradation. Soft Matter 2011, 7, 1426–1440.

100

Xing, P. Y.; Chen, H. Z.; Bai, L. Y.; Zhao, Y. L. Phototriggered transformation from vesicles to branched nanotubes fabricated by a cholesterol-appended cyanostilbene. Chem. Commun. 2015, 51, 9309–9312.

101

Li, D. D.; Ma, Y. C.; Du, J. Z.; Tao, W.; Du, X. J.; Yang, X. Z.; Wang, J. Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy. Nano Lett. 2017, 17, 2871–2878.

102

Lin, Q. N.; Bao, C. Y.; Yang, Y. L.; Liang, Q. N.; Zhang, D. S.; Cheng, S. Y.; Zhu, L. Y. Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles. Adv. Mater. 2013, 25, 1981–1986.

103

Lv, W.; Yang, T. S.; Yu, Q.; Zhao, Q.; Zhang, K. Y.; Liang, H.; Liu, S. J.; Li, F. Y.; Huang, W. A phosphorescent iridium(Ⅲ) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy. Adv. Sci. 2015, 2, 1500107.

104

Tran, S.; DeGiovanni, P. J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med. 2017, 6, 44.

Publication history
Copyright
Acknowledgements

Publication history

Received: 27 April 2018
Revised: 15 June 2018
Accepted: 18 June 2018
Published: 12 July 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We gratefully acknowledge financial support from Dr. Li Dak-Sum Research Fund (Start-up Fund) of The University of Hong Kong and Seed Fund for Basic Research of The University of Hong Kong (Nos. 201704159010 and 201711159053).

Return