Journal Home > Volume 11 , Issue 10

Engineered functional neural interfaces (fNIs) serve as essential abiotic–biotic transducers between an engineered system and the nervous system. They convert external physical stimuli to cellular signals in stimulation mode or read out biological processes in recording mode. Information can be exchanged using electricity, light, magnetic fields, mechanical forces, heat, or chemical signals. fNIs have found applications for studying processes in neural circuits from cell cultures to organs to whole organisms. fNI-facilitated signal transduction schemes, coupled with easily manipulable and observable external physical signals, have attracted considerable attention in recent years. This enticing field is rapidly evolving toward miniaturization and biomimicry to achieve long-term interface stability with great signal transduction efficiency. Not only has a new generation of neuroelectrodes been invented, but the use of advanced fNIs that explore other physical modalities of neuromodulation and recording has begun to increase. This review covers these exciting developments and applications of fNIs that rely on nanoelectrodes, nanotransducers, or bionanotransducers to establish an interface with the nervous system. These nano fNIs are promising in offering a high spatial resolution, high target specificity, and high communication bandwidth by allowing for a high density and count of signal channels with minimum material volume and area to dramatically improve the chronic integration of the fNI to the target neural tissue. Such demanding advances in nano fNIs will greatly facilitate new opportunities not only for studying basic neuroscience but also for diagnosing and treating various neurological diseases.


menu
Abstract
Full text
Outline
About this article

Nano functional neural interfaces

Show Author's information Yongchen Wang1,§Hanlin Zhu2,§Huiran Yang3,4,§Aaron D. Argall5Lan Luan2Chong Xie2( )Liang Guo3,6( )
Department of Biomedical EngineeringThe Ohio State UniversityColumbus43210USA
Department of Biomedical EngineeringThe University of Texas at AustinAustin78712USA
Department of Electrical and Computer EngineeringThe Ohio State UniversityColumbus43210USA
Key Laboratory of Flexible Electronics and Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech UniversityNanjing211816China
Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbus43210USA
Department of NeuroscienceThe Ohio State UniversityColumbus43210USA

§Yongchen Wang, Hanlin Zhu and Huiran Yang contributed equally to this work.

Abstract

Engineered functional neural interfaces (fNIs) serve as essential abiotic–biotic transducers between an engineered system and the nervous system. They convert external physical stimuli to cellular signals in stimulation mode or read out biological processes in recording mode. Information can be exchanged using electricity, light, magnetic fields, mechanical forces, heat, or chemical signals. fNIs have found applications for studying processes in neural circuits from cell cultures to organs to whole organisms. fNI-facilitated signal transduction schemes, coupled with easily manipulable and observable external physical signals, have attracted considerable attention in recent years. This enticing field is rapidly evolving toward miniaturization and biomimicry to achieve long-term interface stability with great signal transduction efficiency. Not only has a new generation of neuroelectrodes been invented, but the use of advanced fNIs that explore other physical modalities of neuromodulation and recording has begun to increase. This review covers these exciting developments and applications of fNIs that rely on nanoelectrodes, nanotransducers, or bionanotransducers to establish an interface with the nervous system. These nano fNIs are promising in offering a high spatial resolution, high target specificity, and high communication bandwidth by allowing for a high density and count of signal channels with minimum material volume and area to dramatically improve the chronic integration of the fNI to the target neural tissue. Such demanding advances in nano fNIs will greatly facilitate new opportunities not only for studying basic neuroscience but also for diagnosing and treating various neurological diseases.

Keywords: nanomaterial, nanoelectrode, neural interface, neurotechnology, neural recording, neural stimulation

References(276)

1

Fenno, L.; Yizhar, O.; Deisseroth, K. The development and application of optogenetics. Ann. Rev. Neurosci. 2011, 34, 389–412.

2

Guo, L. The pursuit of chronically reliable neural interfaces: A materials perspective. Front. Neurosci. 2016, 10, 599.

3

Marin, C.; Fernández, E. Biocompatibility of intracortical microelectrodes: Current status and future prospects. Front. Neuroeng. 2010, 3, 8.

4

Polikov, V. S.; Tresco, P. A.; Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 2005, 148, 1–18.

5

Barrese, J. C.; Rao, N.; Paroo, K.; Triebwasser, C.; Vargas–Irwin, C.; Franquemont, L.; Donoghue, J. P. Failure mode analysis of silicon–based intracortical microelectrode arrays in non–human primates. J. Neural Eng. 2013, 10, 066014.

6

Kozai, T. D. Y.; Catt, K.; Li, X.; Gugel, Z. V.; Olafsson, V. T.; Vazquez, A. L.; Cui, X. T. Mechanical failure modes of chronically implanted planar silicon–based neural probes for laminar recording. Biomaterials 2015, 37, 25–39.

7

McConnell, G. C.; Rees, H. D.; Levey, A. I.; Gutekunst, C. –A.; Gross, R. E.; Bellamkonda, R. V. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J. Neural Eng. 2009, 6, 056003.

8

Kozai, T. D. Y.; Langhals, N. B.; Patel, P. R.; Deng, X. P.; Zhang, H. N.; Smith, K. L.; Lahann, J.; Kotov, N. A.; Kipke, D. R. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 2012, 11, 1065–1073.

9

Xie, C.; Liu, J.; Fu, T. M.; Dai, X. C.; Zhou, W.; Lieber, C. M. Three–dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 2015, 14, 1286–1292.

10

Luan, L.; Wei, X. L.; Zhao, Z. T.; Siegel, J. J.; Potnis, O.; Tuppen, C. A.; Lin, S. Q.; Kazmi, S.; Fowler, R. A.; Holloway, S. et al. Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Sci. Adv. 2017, 3, e1601966.

11

Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D. M.; Pralle, A. Remote control of ion channels and neurons through magnetic–field heating of nanoparticles. Nat. Nanotechnol. 2010, 5, 602–606.

12

McCreery, D. B.; Agnew, W. F.; Yuen, T. G. H.; Bullara, L. Charge–density and charge per phase as cofactors in neural injury induced by electrical–stimulation. IEEE Trans. Biomed. Eng. 1990, 37, 996–1001.

13

Kim, J. H.; Manuelidis, E. E.; Glen, W. W.; Kaneyuki, T. Diaphragm pacing: Histopathological changes in the phrenic nerve following long–term electrical stimulation. J. Thorac. Cardiovasc. Surg. 1976, 72, 602–608.

14

Kotov, N. A.; Winter, J. O.; Clements, I. P.; Jan, E.; Timko, B. P.; Campidelli, S.; Pathak, S.; Mazzatenta, A.; Lieber, C. M.; Prato, M. et al. Nanomaterials for neural interfaces. Adv. Mater. 2009, 21, 3970–4004.

15

Wang, Y. C.; Guo, L. Nanomaterial–enabled neural stimulation. Front. Neurosci. 2016, 10, 69.

16

Young, A. T.; Cornwell, N.; Daniele, M. A. Neuro–nano interfaces: Utilizing nano–coatings and nanoparticles to enable next–generation electrophysiological recording, neural stimulation, and biochemical modulation. Adv. Funct. Mater. 2017, 28, 1700239.

17

Krack, P.; Batir, A.; Van Blercom, N.; Chabardes, S.; Fraix, V.; Ardouin, C.; Koudsie, A.; Limousin, P. D.; Benazzouz, A.; LeBas, J. F. et al. Five–year follow–up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N. Engl. J. Med. 2003, 349, 1925–1934.

18

Boon, P.; Raedt, R.; De Herdt, V.; Wyckhuys, T.; Vonck, K. Electrical stimulation for the treatment of epilepsy. Neurotherapeutics 2009, 6, 218–227.

19

Burgess, N. The 2014 Nobel Prize in physiology or medicine: A spatial model for cognitive neuroscience. Neuron 2014, 84, 1120–1125.

20

Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y.; Song, J.; Song, Y. M.; Pao, H. A.; Kim, R. H. et al. Injectable, cellular–scale optoelectronics with applications for wireless optogenetics. Science 2013, 340, 211–216.

21

Kozai, T. D. Y.; Du, Z. H.; Gugel, Z. V.; Smith, M. A.; Chase, S. M.; Bodily, L. M.; Caparosa, E. M.; Friedlander, R. M.; Cui, X. T. Comprehensive chronic laminar single–unit, multi–unit, and local field potential recording performance with planar single shank electrode arrays. J. Neurosci. Methods 2015, 242, 15–40.

22

Fraser, G. W.; Schwartz, A. B. Recording from the same neurons chronically in motor cortex. J. Neurophysiol. 2012, 107, 1970–1978.

23

Perge, J. A.; Homer, M. L.; Malik, W. Q.; Cash, S.; Eskandar, E.; Friehs, G.; Donoghue, J. P.; Hochberg, L. R. Intra–day signal instabilities affect decoding performance in an intracortical neural interface system. J. Neural. Eng. 2013, 10, 036004.

24

Gilletti, A.; Muthuswamy, J. Brain micromotion around implants in the rodent somatosensory cortex. J. Neural. Eng. 2006, 3, 189–195.

25

Prasad, A.; Xue, Q. S.; Dieme, R.; Sankar, V.; Mayrand, R. C.; Nishida, T.; Streit, W. J.; Sanchez, J. C. Abiotic–biotic characterization of Pt/Ir microelectrode arrays in chronic implants. Front. Neuroeng. 2014, 7, 2.

26

Prasad, A.; Xue, Q. S.; Sankar, V.; Nishida, T.; Shaw, G.; Streit, W. J.; Sanchez, J. C. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J. Neural. Eng. 2012, 9, 056015.

27
Gilgunn, P. J.; Ong, X. C.; Flesher, S. N.; Schwartz, A. B.; Gaunt, R. A. Structural analysis of explanted microelectrode arrays. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 2013, pp 719–722.https://doi.org/10.1109/NER.2013.6696035
DOI
28

Patel, P. R.; Na, K.; Zhang, H. N; Kozai, T. D. Y.; Kotov, N. A.; Yoon, E.; Chestek, C. A. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J. Neural Eng. 2015, 12, 046009.

29

Rousche, P. J.; Normann, R. A. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J. Neurosci. Methods 1998, 82, 1–15.

30

Williams, J. C.; Rennaker, R. L.; Kipke, D. R. Long–term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res. Protoc. 1999, 4, 303–313.

31

Kipke, D. R.; Vetter, R. J.; Williams, J. C.; Hetke, J. F. Silicon–substrate intracortical microelectrode arrays for long–term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 151–155.

32

Simeral, J. D.; Kim, S. P.; Black, M. J.; Donoghue, J. P.; Hochberg, L. R. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J. Neural Eng. 2011, 8, 025027.

33

Sakmann, B.; Neher, E. Single–Channel Recording, 2nd ed. ; Springer: New York, NY, USA, 2009.

34

Souslova, V.; Cesare, P.; Ding, Y. N.; Akopian, A. N.; Stanfa, L.; Suzuki, R.; Carpenter, K.; Dickenson, A.; Boyce, S.; Hill, R. et al. Warm–coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 2000, 407, 1015–1017.

35

Lee, J.; Ishihara, A.; Oxford, G.; Johnson, B.; Jacobson, K. Regulation of cell movement is mediated by stretchactivated calcium channels. Nature 1999, 400, 382–386.

36

Thomas, C. A., Jr.; Springer, P. A.; Loeb, G. E.; Berwald–Netter, Y.; Okun, L. M. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 1972, 74, 61–66.

37

Connolly, P.; Clark, P.; Curtis, A. S.; Dow, J. A. T.; Wilkinson, C. D. An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens. Bioelectron. 1990, 5, 223–234.

38

Pine, J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J. Neurosci. Methods 1980, 2, 19–31.

39

Hai, A.; Spira, M. E. On–chip electroporation, membrane repair dynamics and transient in–cell recordings by arrays of gold mushroom–shaped microelectrodes. Lab Chip 2012, 12, 2865–2873.

40

Xie, C.; Lin, Z. L.; Hanson, L.; Cui, Y.; Cui, B. X. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 2012, 7, 185–190.

41

Xie, C.; Hanson, L.; Xie, W. J.; Lin, Z. L.; Cui, B. X.; Cui, Y. Noninvasive neuron pinning with nanopillar arrays. Nano Lett. 2010, 10, 4020–4024.

42

Lin, Z. C.; Xie, C.; Osakada, Y.; Cui, Y.; Cui, B. X. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 2014, 5, 3206.

43

Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. –H.; Gertner, R. S.; Park, H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 2012, 7, 180–184.

44

Abbott, J.; Ye, T. Y.; Qin, L.; Jorgolli, M.; Gertner, R. S.; Ham, D.; Park, H. CMOS nanoelectrode array for allelectrical intracellular electrophysiological imaging. Nat. Nanotechnol. 2017, 12, 460–466.

45

Liu, R.; Chen, R. J.; Elthakeb, A. T.; Lee, S. H.; Hinckley, S.; Khraiche, M. L.; Scott, J.; Pre, D.; Hwang, Y.; Tanaka, A. et al. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 2017, 17, 2757–2764.

46

Tian, B. Z.; Cohen–Karni, T.; Qing, Q.; Duan, X. J.; Xie, P.; Lieber, C. M. Three–dimensional, flexible nanoscale fieldeffect transistors as localized bioprobes. Science 2010, 329, 830–834.

47

Qing, Q.; Jiang, Z.; Xu, L.; Gao, R. X.; Mai, L. Q.; Lieber, C. M. Free–standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 2014, 9, 142–147.

48

Duan, X. J.; Gao, R. X.; Xie, P.; Cohen–Karni, T.; Qing, Q.; Choe, H. S.; Tian, B. Z.; Jiang, X. C.; Lieber, C. M. Intracellular recordings of action potentials by an extracellular nanoscale field–effect transistor. Nat. Nanotechnol. 2012, 7, 174–179.

49

Fu, T. –M.; Duan, X. J.; Jiang, Z.; Dai, X. C.; Xie, P.; Cheng, Z. G.; Lieber, C. M. Sub–10–nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. Proc. Natl. Acad. Sci. USA 2014, 111, 1259–1264.

50

Jayant, K.; Hirtz, J. J.; Plante, I. J. –L.; Tsai, D. M.; de Boer, W. D. A. M.; Semonche, A.; Peterka, D. S.; Owen, J. S.; Sahin, O.; Shepard, K. L. et al. Targeted intracellular voltage recordings from dendritic spines using quantum–dot–coated nanopipettes. Nat. Nanotechnol. 2017, 12, 335–342.

51

Kim, R.; Nam, Y. Electrochemical layer–by–layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel–inspired polydopamine adhesive. J. Neural Eng. 2015, 12, 026010.

52

Li, M. Z.; Zhou, Q.; Duan, Y. Y. Nanostructured porous platinum electrodes for the development of low–cost fully implantable cortical electrical stimulator. Sensor. Actuat. B: Chem. 2015, 221, 179–186.

53

Weremfo, A.; Carter, P.; Hibbert, D. B.; Zhao, C. Investigating the interfacial properties of electrochemically roughened platinum electrodes for neural stimulation. Langmuir 2015, 31, 2593–2599.

54

Park, S.; Song, Y. J.; Boo, H.; Chung, T. D. Nanoporous Pt microelectrode for neural stimulation and recording: In vitro characterization. J. Phys. Chem. C 2010, 114, 8721–8726.

55
Lee, Y. J.; Lee, S. J.; Yoon, H. S.; Park, J. Y. A bulk micromachined silicon neural probe with nanoporous platinum electrode for low impedance recording. In SENSORS, 2013 IEEE, Baltimore, MD, USA, 2013, pp 1–4.https://doi.org/10.1109/ICSENS.2013.6688581
DOI
56

Chung, T.; Wang, J. Q.; Wang, J.; Cao, B.; Li, Y.; Pang, S. W. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. J. Neural Eng. 2015, 12, 056018.

57

Chen, Y. –C.; Hsu, H. –L.; Lee, Y. –T.; Su, H. –C.; Yen, S. –J.; Chen, C. –H.; Hsu, W. –L.; Yew, T. –R.; Yeh, S. –R.; Yao, D. –J. et al. An active, flexible carbon nanotube microelectrode array for recording electrocorticograms. J. Neural Eng. 2011, 8, 034001.

58

Kim, G. H.; Kim, K.; Nam, H.; Shin, K.; Choi, W.; Shin, J. H.; Lim, G. CNT–Au nanocomposite deposition on gold microelectrodes for improved neural recordings. Sensor. Actuat. B: Chem. 2017, 252, 152–158.

59

Kim, J. –H.; Kang, G.; Nam, Y.; Choi, Y. –K. Surfacemodified microelectrode array with flake nanostructure for neural recording and stimulation. Nanotechnology 2010, 21, 085303.

60

Kim, Y. H.; Kim, G. H.; Kim, A. Y.; Han, Y. H.; Chung, M. –A.; Jung, S. –D. In vitro extracellular recording and stimulation performance of nanoporous gold–modified multielectrode arrays. J. Neural Eng. 2015, 12, 066029.

61

Brüggemann, D.; Wolfrum, B.; Maybeck, V.; Mourzina, Y.; Jansen, M.; Offenh?usser, A. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology 2011, 22, 265104.

62

Zhou, H. B.; Li, G.; Sun, X. N.; Zhu, Z. H.; Jin, Q. H.; Zhao, J. L.; Ren, Q. S. Integration of Au nanorods with flexible thin–film microelectrode arrays for improved neural interfaces. J. Microelectromech. Syst. 2009, 18, 88–96.

63

Zhao, Z. Y.; Gong, R. X.; Zheng, L.; Wang, J. In vivo neural recording and electrochemical performance of microelectrode arrays modified by rough–surfaced AuPt alloy nanoparticles with nanoporosity. Sensors 2016, 16, 1851.

64

Kim, Y. H.; Kim, G. H.; Kim, M. S.; Jung, S. –D. Iridium oxide–electrodeposited nanoporous gold multielectrode array with enhanced stimulus efficacy. Nano Lett. 2016, 16, 7163–7168.

65

Zeng, Q.; Xia, K.; Sun, B.; Yin, Y. L.; Wu, T. Z.; Humayun, M. S. Electrodeposited iridium oxide on platinum nanocones for improving neural stimulation microelectrodes. Electrochim. Acta 2017, 237, 152–159.

66

Jan, E.; Hendricks, J. L.; Husaini, V.; Richardson–Burns, S. M.; Sereno, A.; Martin, D. C.; Kotov, N. A. Layered carbon nanotube–polyelectrolyte electrodes outperform traditional neural interface materials. Nano Lett. 2009, 9, 4012–4018.

67

Deng, M.; Yang, X.; Silke, M.; Qiu, W. M.; Xu, M. S.; Borghs, G.; Chen, H. Z. Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sensor. Actuat. B: Chem. 2011, 158, 176–184.

68

Luo, X. L.; Weaver, C. L.; Tan, S. S.; Cui, X. T. Pure graphene oxide doped conducting polymer nanocomposite for bio–interfacing. J. Mater. Chem. B 2013, 1, 1340–1348.

69

Weaver, C. L.; Li, H.; Luo, X.; Cui, X. T. A graphene oxide/conducting polymer nanocomposite for electrochemical dopamine detection: Origin of improved sensitivity and specificity. J. Mater. Chem. B 2014, 2, 5209–5219.

70

Ng, A. M. H.; Kenry; Teck Lim, C.; Low, H. Y.; Loh, K. P. Highly sensitive reduced graphene oxide microelectrode array sensor. Biosens. Bioelectron. 2015, 65, 265–273.

71

Kook, G.; Lee, S. W.; Lee, H. C.; Cho, I. –J.; Lee, H. J. Neural probes for chronic applications. Micromachines 2016, 7, 179.

72

Jorfi, M.; Skousen, J. L.; Weder, C.; Capadona, J. R. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J. Neural Eng. 2014, 12, 011001.

73

Kozai, T. D. Y.; Jaquins–Gerstl, A. S.; Vazquez, A. L.; Michael, A. C.; Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 2015, 6, 48–67.

74

Takmakov, P.; Ruda, K.; Scott Phillips, K.; Isayeva, I. S.; Krauthamer, V.; Welle, C. G. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. J. Neural Eng. 2015, 12, 026003.

75

Seymour, J. P.; Kipke, D. R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 2007, 28, 3594–3607.

76

Skousen, J. L.; Merriam, M. E.; Srivannavit, O.; Perlin, G.; Wise, K. D.; Tresco, P. A. Reducing surface area while maintaining implant penetrating profile lowers the brain foreign body response to chronically implanted planar silicon microelectrode arrays. Prog. Brain Res. 2011, 194, 167–180.

77

Karumbaiah, L.; Saxena, T.; Carlson, D.; Patil, K.; Patkar, R.; Gaupp, E. A.; Betancur, M.; Stanley, G. B.; Carin, L.; Bellamkonda, R. V. Relationship between intracortical electrode design and chronic recording function. Biomaterials 2013, 34, 8061–8074.

78

Guitchounts, G.; Markowitz, J. E.; Liberti, W. A.; Gardner, T. J. A carbon–fiber electrode array for long–term neural recording. J. Neural Eng. 2013, 10, 046016.

79

Vitale, F.; Summerson, S. R.; Aazhang, B.; Kemere, C.; Pasquali, M. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 2015, 9, 4465–4474.

80

Mercanzini, A.; Cheung, K.; Buhl, D. L.; Boers, M.; Maillard, A.; Colin, P.; Bensadoun, J. –C.; Bertsch, A.; Renaud, P. Demonstration of cortical recording using novel flexible polymer neural probes. Sensor. Actuat. A: Phys. 2008, 143, 90–96.

81

Wu, F.; Tien, L. W.; Chen, F.; Berke, J. D.; Kaplan, D. L.; Yoon, E. Silk–backed structural optimization of high–density flexible intracortical neural probes. J. Microelectromech. Syst. 2015, 24, 62–69.

82

Du, Z. J.; Kolarcik, C. L.; Kozai, T. D. Y.; Luebben, S. D.; Sapp, S. A.; Zheng, X. S.; Nabity, J. A.; Cui, X. T. Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater. 2017, 53, 46–58.

83

Sohal, H. S.; Clowry, G. J.; Jackson, A.; O'Neill, A.; Baker, S. N. Mechanical flexibility reduces the foreign body response to long–term implanted microelectrodes in rabbit cortex. PLoS One 2016, 11, e0165606.

84

Guo, L.; Guvanasen, G. S.; Liu, X.; Tuthill, C.; Nichols, T. R.; DeWeerth, S. P. A PDMS–based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 1–10.

85

Liu, J.; Xie, C.; Dai, X. H.; Jin, L. H.; Zhou, W.; Lieber, C. M. Multifunctional three–dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. USA 2013, 110, 6694–6699.

86

Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe–injectable electronics. Nat. Nanotechnol. 2015, 10, 629–636.

87

Fu, T. –M.; Hong, G. S.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Stable long–term chronic brain mapping at the single–neuron level. Nat. Methods 2016, 13, 875–882.

88

Luan, L.; Sullender, C. T.; Li, X.; Zhao, Z. T.; Zhu, H. L.; Wei, X. L.; Xie, C.; Dunn, A. K. Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model. J. Neurosci. Methods 2018, 295, 68–76.

89

Zhang, H. N.; Patel, P. R.; Xie, Z. X.; Swanson, S. D.; Wang, X. D.; Kotov, N. A. Tissue–compliant neural implants from microfabricated carbon nanotube multilayer composite. ACS Nano 2013, 7, 7619–7629.

90

Henze, D. A.; Borhegyi, Z.; Csicsvari, J.; Mamiya, A.; Harris, K. D.; Buzsáki, G. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 2000, 84, 390–400.

91

Du, J. G.; Blanche, T. J.; Harrison, R. R.; Lester, H. A.; Masmanidis, S. C. Multiplexed, high density electrophysiology with nanofabricated neural probes. PLoS One 2011, 6, e26204.

92

Marblestone, A. H.; Zamft, B. M.; Maguire, Y. G.; Shapiro, M. G.; Cybulski, T. R.; Glaser, J. I.; Amodei, D.; Stranges, P. B.; Kalhor, R.; Dalrymple, D. A. et al. Physical principles for scalable neural recording. Front. Comput. Neurosci. 2013, 7, 137.

93

Camu?as–Mesa, L. A.; Quiroga, R. Q. A detailed and fast model of extracellular recordings. Neural Comput. 2013, 25, 1191–1212.

94

Pedreira, C.; Martinez, J.; Ison, M. J.; Quiroga, R. Q. How many neurons can we see with current spike sorting algorithms? J. Neurosci. Methods 2012, 211, 58–65.

95

Guo, L.; DeWeerth, S. P. An effective lift–off method for patterning high–density gold interconnects on an elastomeric substrate. Small 2010, 6, 2847–2852.

96

Khodagholy, D.; Doublet, T.; Quilichini, P.; Gurfinkel, M.; Leleux, P.; Ghestem, A.; Ismailova, E.; Hervé, T.; Sanaur, S.; Bernard, C. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 2013, 4, 1575.

97

Viventi, J.; Kim, D. –H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y. –S.; Avrin, A. E.; Tiruvadi, V. R.; Hwang, S. –W.; Vanleer, A. C. et al. Flexible, foldable, actively multiplexed, high–density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599–1605.

98

Rios, G.; Lubenov, E. V.; Chi, D.; Roukes, M. L.; Siapas, A. G. Nanofabricated neural probes for dense 3–D recordings of brain activity. Nano Lett. 2016, 16, 6857–6862.

99

Scholvin, J.; Kinney, J. P.; Bernstein, J. G.; Moore–Kochlacs, C.; Kopell, N.; Fonstad, C. G.; Boyden, E. S. Close–packed silicon microelectrodes for scalable spatially oversampled neural recording. IEEE Trans. Biomed. Eng. 2016, 63, 120–130.

100

Wu, F.; Stark, E.; Ku, P. –C.; Wise, K. D.; Buzsáki, G.; Yoon, E. Monolithically integrated μLEDs on silicon neural probes for high–resolution optogenetic studies in behaving animals. Neuron 2015, 88, 1136–1148.

101

Wei, X. L.; Luan, L.; Zhao, Z. T.; Li, X.; Zhu, H. L.; Potnis, O.; Xie, C. Nanofabricated ultraflexible electrode arrays for high–density intracortical recording. Adv. Sci. 2018, 1700625.

102

Lopez, C. M.; Andrei, A.; Mitra, S.; Welkenhuysen, M.; Eberle, W.; Bartic, C.; Puers, R.; Yazicioglu, R. F.; Gielen, G. G. E. An implantable 455–active–electrode 52–channel CMOS neural probe. IEEE J. Solid–St. Circ. 2014, 49, 248–261.

103

Lopez, C. M.; Putzeys, J.; Raducanu, B. C.; Ballini, M.; Wang, S. W.; Andrei, A.; Rochus, V.; Vandebriel, R.; Severi, S.; Hoof, C. V. et al. A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 510–522.

104

Jun, J. J.; Steinmetz, N. A.; Siegle, J. H.; Denman, D. J.; Bauza, M.; Barbarits, B.; Lee, A. K.; Anastassiou, C. A.; Andrei, A.; Aydın, Ç. et al. Fully integrated silicon probes for high–density recording of neural activity. Nature 2017, 551, 232–236.

105

Kruss, S.; Salem, D. P.; Vuković, L.; Lima, B.; Vander Ende, E.; Boyden, E. S.; Strano, M. S. High–resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proc. Natl. Acad. Sci. USA 2017, 114, 1789–1794.

106

Beyene, A. G.; McFarlane, I. R.; Pinals, R. L.; Landry, M. P. Stochastic simulation of dopamine neuromodulation for implementation of fluorescent neurochemical probes in the striatal extracellular space. ACS Chem. Neurosci. 2017, 8, 2275–2289.

107

Obien, M. E. J.; Deligkaris, K.; Bullmann, T.; Bakkum, D. J.; Frey, U. Revealing neuronal function through microelectrode array recordings. Front. Neurosci. 2015, 8, 423.

108

Seymour, J. P.; Wu, F.; Wise, K. D.; Yoon, E. State–ofthe–art MEMS and microsystem tools for brain research. Microsyst. Nanoeng. 2017, 3, 16066.

109

Grienberger, C.; Konnerth, A. Imaging calcium in neurons. Neuron 2012, 73, 862–885.

110

Peterka, D. S.; Takahashi, H.; Yuste, R. Imaging voltage in neurons. Neuron 2011, 69, 9–21.

111

Rowland, C. E.; Susumu, K.; Stewart, M. H.; Oh, E.; M?kinen, A. J.; O'Shaughnessy, T. J.; Kushto, G.; Wolak, M. A.; Erickson, J. S.; Efros, A. L. et al. Electric field modulation of semiconductor quantum dot photoluminescence: Insights into the design of robust voltage–sensitive cellular imaging probes. Nano Lett. 2015, 15, 6848–6854.

112

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

113

Empedocles, S. A.; Bawendi, M. G. Quantum–confined stark effect in single CdSe nanocrystallite quantum dots. Science 1997, 278, 2114–2117.

114

Marshall, J. D.; Schnitzer, M. J. Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 2013, 7, 4601–4609.

115

Park, K.; Weiss, S. Design rules for membrane–embedded voltage–sensing nanoparticles. Biophys. J. 2017, 112, 703–713.

116

Kn?pfel, T.; Díez–García, J.; Akemann, W. Optical probing of neuronal circuit dynamics: Genetically encoded versus classical fluorescent sensors. Trends Neurosci. 2006, 29, 160–166.

117

Tsytsarev, V.; Liao, L. D.; Kong, K. V.; Liu, Y. H.; Erzurumlu, R. S.; Olivo, M.; Thakor, N. V. Recent progress in voltage–sensitive dye imaging for neuroscience. J. Nanosci. Nanotechnol. 2014, 14, 4733–4744.

118

Tsytsarev, V.; Pope, D.; Pumbo, E.; Yablonskii, A.; Hofmann, M. Study of the cortical representation of whisker directional deflection using voltage–sensitive dye optical imaging. NeuroImage 2010, 53, 233–238.

119

Eriksson, D.; Wunderle, T.; Schmidt, K. Visual cortex combines a stimulus and an error–like signal with a proportion that is dependent on time, space, and stimulus contrast. Front. Syst. Neurosci. 2012, 6, 26.

120

Grinvald, A.; Salzberg, B. M.; Cohen, L. B. Simultaneous recording from several neurones in an invertebrate central nervous system. Nature 1977, 268, 140–142.

121

Cohen, L. B.; Salzberg, B. M.; Grinvald, A. Optical methods for monitoring neuron activity. Annu. Rev. Neurosci. 1978, 1, 171–182.

122

Grandy, T. H.; Greenfield, S. A.; Devonshire, I. M. An evaluation of in vivo voltage–sensitive dyes: Pharmacological side effects and signal–to–noise ratios after effective removal of brain–pulsation artifacts. J. Neurophysiol. 2012, 108, 2931–2945.

123

Nag, O. K.; Stewart, M. H.; Deschamps, J. R.; Susumu, K.; Oh, E.; Tsytsarev, V.; Tang, Q. G.; Efros, A. L.; Vaxenburg, R.; Black, B. J. et al. Quantum dot–peptide–fullerene bioconjugates for visualization of in vitro and in vivo cellular membrane potential. ACS Nano 2017, 11, 5598–5613.

124

Nakai, J.; Ohkura, M.; Imoto, K. A high signal–to–noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 2001, 19, 137–141.

125

Nagai, T.; Yamada, S.; Tominaga, T.; Ichikawa, M.; Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA 2004, 101, 10554–10559.

126

Inoue, M.; Takeuchi, A.; Horigane, S.; Ohkura, M.; Gengyo–Ando, K.; Fujii, H.; Kamijo, S.; Takemoto–Kimura, S.; Kano, M.; Nakai, J. et al. Rational design of a high–affinity, fast, red calcium indicator R–CaMP2. Nat. Methods 2015, 12, 64–70.

127

Akemann, W.; Mutoh, H.; Perron, A.; Rossier, J.; Kn?pfel, T. Imaging brain electric signals with genetically targeted voltage–sensitive fluorescent proteins. Nat. Methods 2010, 7, 643–649.

128

Miyawaki, A.; Llopis, J.; Heim, R.; McCaffery, J. M.; Adams, J. A.; Ikura, M.; Tsien, R. Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 1997, 388, 882–887.

129

Burgoyne, R. D. Neuronal calcium sensor proteins: Generating diversity in neuronal Ca2+ signalling. Nat. Rev. Neurosci. 2007, 8, 182–193.

130

Heim, N.; Griesbeck, O. Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J. Biol. Chem. 2004, 279, 14280–14286.

131

Tian, L.; Hires, S. A.; Mao, T. Y.; Huber, D.; Chiappe, M. E.; Chalasani, S. H.; Petreanu, L.; Akerboom, J.; McKinney, S. A.; Schreiter, E. R. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 2009, 6, 875–881.

132

Ahrens, M. B.; Orger, M. B.; Robson, D. N.; Li, J. M.; Keller, P. J. Whole–brain functional imaging at cellular resolution using light–sheet microscopy. Nat. Methods 2013, 10, 413–420.

133

Chen, T. W.; Wardill, T. J.; Sun, Y.; Pulver, S. R.; Renninger, S. L.; Baohan, A.; Schreiter, E. R.; Kerr, R. A.; Orger, M. B.; Jayaraman, V. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013, 499, 295–300.

134

Barretto, R. P. J.; Gillis–Smith, S.; Chandrashekar, J.; Yarmolinsky, D. A.; Schnitzer, M. J.; Ryba, N. J. P.; Zuker, C. S. The neural representation of taste quality at the periphery. Nature 2015, 517, 373–376.

135

Heim, N.; Garaschuk, O.; Friedrich, M. W.; Mank, M.; Milos, R. I.; Kovalchuk, Y.; Konnerth, A.; Griesbeck, O. Improved calcium imaging in transgenic mice expressing a troponin C–based biosensor. Nat. Methods 2007, 4, 127–129.

136

Palmer, A. E.; Giacomello, M.; Kortemme, T.; Hires, S. A.; Lev–Ram, V.; Baker, D.; Tsien, R. Y. Ca2+ indicators based on computationally redesigned calmodulin–peptide pairs. Chem. Biol. 2006, 13, 521–530.

137

Horikawa, K.; Yamada, Y.; Matsuda, T.; Kobayashi, K.; Hashimoto, M.; Matsu–ura, T.; Miyawaki, A.; Michikawa, T.; Mikoshiba, K.; Nagai, T. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon–Nano. Nat. Methods 2010, 7, 729–732.

138

Dreosti, E.; Odermatt, B.; Dorostkar, M. M.; Lagnado, L. A genetically encoded reporter of synaptic activity in vivo. Nat. Methods 2009, 6, 883–889.

139

Zhao, Y. X.; Araki, S.; Wu, J. H.; Teramoto, T.; Chang, Y. F.; Nakano, M.; Abdelfattah, A. S.; Fujiwara, M.; Ishihara, T.; Nagai, T. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 2011, 333, 1888–1891.

140

Mank, M.; Santos, A. F.; Direnberger, S.; Mrsic–Flogel, T. D.; Hofer, S. B.; Stein, V.; Hendel, T.; Reiff, D. F.; Levelt, C.; Borst, A. et al. A genetically encoded calcium indicator for chronic in vivo two–photon imaging. Nat. Methods 2008, 5, 805–811.

141

Xu, Y. X.; Zou, P.; Cohen, A. E. Voltage imaging with genetically encoded indicators. Curr. Opin. Chem. Biol. 2017, 39, 1–10.

142

Jin, L.; Han, Z.; Platisa, J.; Wooltorton, J. R.; Cohen, L. B.; Pieribone, V. A. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 2012, 75, 779–785.

143

Cao, G.; Platisa, J.; Pieribone, V. A.; Raccuglia, D.; Kunst, M.; Nitabach, M. N. Genetically targeted optical electrophysiology in intact neural circuits. Cell 2013, 154, 904–913.

144

St–Pierre, F.; Marshall, J. D.; Yang, Y.; Gong, Y. Y.; Schnitzer, M. J.; Lin, M. Z. High–fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 2014, 17, 884–889.

145

Lam, A. J.; St–Pierre, F.; Gong, Y. Y.; Marshall, J. D.; Cranfill, P. J.; Baird, M. A.; McKeown, M. R.; Wiedenmann, J.; Davidson, M. W.; Schnitzer, M. J. et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods 2012, 9, 1005–1012.

146

Siegel, M. S.; Isacoff, E. Y. A genetically encoded optical probe of membrane voltage. Neuron 1997, 19, 735–741.

147

Ataka, K.; Pieribone, V. A. A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys. J. 2002, 82, 509–516.

148

Sakai, R.; Repunte–Canonigo, V.; Raj, C. D.; Knöpfel, T. Design and characterization of a DNA–encoded, voltagesensitive fluorescent protein. Eur. J. Neurosci. 2001, 13, 2314–2318.

149

Guerrero, G.; Siegel, M. S.; Roska, B.; Loots, E.; Isacoff, E. Y. Tuning FlaSh: Redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential. Biophys. J. 2002, 83, 3607–3618.

150

Baker, B. J.; Jin, L.; Han, Z.; Cohen, L. B.; Popovic, M.; Platisa, J.; Pieribone, V. Genetically encoded fluorescent voltage sensors using the voltage–sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics. J. Neurosci. Methods 2012, 208, 190–196.

151

Lundby, A.; Mutoh, H.; Dimitrov, D.; Akemann, W.; Knöpfel, T. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci–VSP voltagesensing movements. PLoS One 2008, 3, e2514.

152

Perron, A.; Mutoh, H.; Launey, T.; Kn?pfel, T. Red–shifted voltage–sensitive fluorescent proteins. Chem. Biol. 2009, 16, 1268–1277.

153

Akemann, W.; Mutoh, H.; Perron, A.; Park, Y. K.; Iwamoto, Y.; Knöpfel, T. Imaging neural circuit dynamics with a voltage–sensitive fluorescent protein. J. Neurophysiol. 2012, 108, 2323–2337.

154

Kralj, J. M.; Hochbaum, D. R.; Douglass, A. D.; Cohen, A. E. Electrical spiking in Escherichia coli probed with a fluorescent voltage–indicating protein. Science 2011, 333, 345–348.

155

Kralj, J. M.; Douglass, A. D.; Hochbaum, D. R.; Maclaurin, D.; Cohen, A. E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 2011, 9, 90–95.

156

Hochbaum, D. R.; Zhao, Y. X.; Farhi, S. L.; Klapoetke, N.; Werley, C. A.; Kapoor, V.; Zou, P.; Kralj, J. M.; Maclaurin, D.; Smedemark–Margulies, N. et al. All–optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 2014, 11, 825–833.

157

Wang, K.; Fishman, H. A.; Dai, H. J.; Harris, J. S. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 2006, 6, 2043–2048.

158

Tsang, W. M.; Stone, A. L.; Otten, D.; Aldworth, Z. N.; Daniel, T. L.; Hildebrand, J. G.; Levine, R. B.; Voldman, J. Insect–machine interface: A carbon nanotube–enhanced flexible neural probe. J. Neurosci. Methods 2012, 204, 355–365.

159

Yi, W. W.; Chen, C. Y.; Feng, Z. Y.; Xu, Y.; Zhou, C. P.; Masurkar, N.; Cavanaugh, J.; Ming–Cheng Cheng, M. A flexible and implantable microelectrode arrays using hightemperature grown vertical carbon nanotubes and a biocompatible polymer substrate. Nanotechnology 2015, 26, 125301.

160

Panescu, D. Emerging technologies wireless communication systems for implantable medical devices]. IEEE Eng. Med. Biol. Mag. 2008, 27, 96–101.

161

Beric, A.; Kelly, P. J.; Rezai, A.; Sterio, D.; Mogilner, A.; Zonenshayn, M.; Kopell, B. Complications of deep brain stimulation surgery. Stereotact. Funct. Neurosurg. 2001, 77, 73–78.

162

Eom, K.; Hwang, S.; Yun, S.; Byun, K. M.; Jun, S. B.; Kim, S. J. Photothermal activation of astrocyte cells using localized surface plasmon resonance of gold nanorods. J. Biophotonics 2017, 10, 486–493.

163

Chen, R.; Romero, G.; Christiansen, M. G.; Mohr, A.; Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 2015, 347, 1477–1480.

164

Barolet, D. Light–emitting diodes (LEDs) in dermatology. Semin. Cutan. Med. Surg. 2008, 27, 227–238.

165

Legon, W.; Sato, T. F.; Opitz, A.; Mueller, J.; Barbour, A.; Williams, A.; Tyler, W. J. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat. Neurosci. 2014, 17, 322–329.

166

Deng, Z. –D.; Lisanby, S. H.; Peterchev, A. V. Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul. 2013, 6, 1–13.

167

Paviolo, C.; Haycock, J. W.; Cadusch, P. J.; McArthur, S. L.; Stoddart, P. R. Laser exposure of gold nanorods can induce intracellular calcium transients. J. Biophotonics 2014, 7, 761–765.

168

Choi, Y. K.; Lee, D. H.; Seo, Y. K.; Jung, H.; Park, J. K.; Cho, H. Stimulation of neural differentiation in human bone marrow mesenchymal stem cells by extremely low–frequency electromagnetic fields incorporated with MNPs. Appl. Biochem. Biotechnol. 2014, 174, 1233–1245.

169

Nakatsuji, H.; Numata, T.; Morone, N.; Kaneko, S.; Mori, Y.; Imahori, H.; Murakami, T. Thermosensitive ion channel activation in single neuronal cells by using surfaceengineered plasmonic nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 11725–11729.

170

Bareket, L.; Waiskopf, N.; Rand, D.; Lubin, G.; David–Pur, M.; Ben–Dov, J.; Roy, S.; Eleftheriou, C.; Sernagor, E.; Cheshnovsky, O. et al. Semiconductor nanorod–carbon nanotube biomimetic films for wire–free photostimulation of blind retinas. Nano Lett. 2014, 14, 6685–6692.

171

Guduru, R.; Liang, P.; Hong, J.; Rodzinski, A.; Hadjikhani, A.; Horstmyer, J.; Levister, E.; Khizroev, S. Magnetoelectric "spin" on stimulating the brain. Nanomedicine 2015, 10, 2051–2061.

172

Marino, A.; Arai, S.; Hou, Y. Y.; Sinibaldi, E.; Pellegrino, M.; Chang, Y. T.; Mazzolai, B.; Mattoli, V.; Suzuki, M.; Ciofani, G. Piezoelectric nanoparticle–assisted wireless neuronal stimulation. ACS Nano 2015, 9, 7678–7689.

173

Carvalho–de–Souza, J. L.; Treger, J. S.; Dang, B. B.; Kent, S. B. H.; Pepperberg, D. R.; Bezanilla, F. Photosensitivity of neurons enabled by cell–targeted gold nanoparticles. Neuron 2015, 86, 207–217.

174

Shah, S.; Liu, J. J.; Pasquale, N.; Lai, J. P.; McGowan, H.; Pang, Z. P.; Lee, K. B. Hybrid upconversion nanomaterials for optogenetic neuronal control. Nanoscale 2015, 7, 16571–16577.

175

Tay, A.; Kunze, A.; Murray, C.; Di Carlo, D. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano 2016, 10, 2331–2341.

176

Catterall, W. A. Structure and function of voltage–gated ion channels. Annu. Rev. Biochem. 1995, 64, 493–531.

177

Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 2007, 8, 451–465.

178

Bareket–Keren, L.; Hanein, Y. Novel interfaces for light directed neuronal stimulation: Advances and challenges. Int. J. Nanomedicine 2014, 9, 65–83.

179

Smith, A. M.; Mancini, M. C.; Nie, S. M. Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

180

Del Bonis–O'Donnell, J. T.; Page, R. H.; Beyene, A. G.; Tindall, E. G.; McFarlane, I. R.; Landry, M. P. Dual near–infrared two–photon microscopy for deep–tissue dopamine nanosensor imaging. Adv. Funct. Mater. 2017, 27, 1702112.

181

Lugo, K.; Miao, X. Y.; Rieke, F.; Lin, L. Y. Remote switching of cellular activity and cell signaling using light in conjunction with quantum dots. Biomed. Opt. Express 2012, 3, 447–454.

182

Gomez, N.; Winter, J. O.; Shieh, F.; Saunders, A. E.; Korgel, B. A.; Schmidt, C. E. Challenges in quantum dot–neuron active interfacing. Talanta 2005, 67, 462–471.

183

Winter, J. O.; Liu, T. Y.; Korgel, B. A.; Schmidt, C. E. Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv. Mater. 2001, 13, 1673–1677.

DOI
184

Winter, J. O.; Gomez, N.; Korgel, B. A.; Schmidt, C. E. Quantum dots for electrical stimulation of neural cells. Proceedings of SPIE 2005, 5705, 235–246.

185

Pappas, T. C.; Wickramanyake, W. M. S.; Jan, E.; Motamedi, M.; Brodwick, M.; Kotov, N. A. Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. Nano Lett. 2007, 7, 513–519.

186

Molokanova, E.; Bartel, J. A.; Zhao, W. W.; Naasani, I.; Ignatius, M. J.; Treadway, J. A.; Savtchenko, A. Quantum dots move beyond fluorescence imaging. Biophot. Int. 2008, 15, 26–31.

187

Yue, K.; Guduru, R.; Hong, J.; Liang, P.; Nair, M.; Khizroev, S. Magneto–electric nano–particles for non–invasive brain stimulation. PLoS One 2012, 7, e44040.

188

Tyler, W. J.; Tufail, Y.; Finsterwald, M.; Tauchmann, M. L.; Olson, E. J.; Majestic, C. Remote excitation of neuronal circuits using low–intensity, low–frequency ultrasound. PLoS One 2008, 3, e3511.

189

Wang, Y. C.; Wu, Y.; Quadri, F.; Prox, J. D.; Guo, L. Cytotoxicity of ZnO nanowire arrays on excitable cells. Nanomaterial 2017, 7, 80.

190

Ciofani, G.; Danti, S.; D'Alessandro, D.; Ricotti, L.; Moscato, S.; Bertoni, G.; Falqui, A.; Berrettini, S.; Petrini, M.; Mattoli, V. et al. Enhancement of neurite outgrowth in neuronal–like cells following boron nitride nanotubemediated stimulation. ACS Nano 2010, 4, 6267–6277.

191

Ricotti, L.; Fujie, T.; Vazão, H.; Ciofani, G.; Marotta, R.; Brescia, R.; Filippeschi, C.; Corradini, I.; Matteoli, M.; Mattoli, V. et al. Boron nitride nanotube–mediated stimulation of cell co–culture on micro–engineered hydrogels. PLoS One 2013, 8, e71707.

192

Genchi, G. G.; Ceseracciu, L.; Marino, A.; Labardi, M.; Marras, S.; Pignatelli, F.; Bruschini, L.; Mattoli, V.; Ciofani, G. P(VDF–TrFE)/BaTiO3 nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH–SY5Y neuroblastoma cells. Adv. Healthc. Mater. 2016, 5, 1808–1820.

193

Rojas, C.; Tedesco, M.; Massobrio, P.; Marino, A.; Ciofani, G.; Martinoia, S.; Raiteri, R. Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles. J. Neural Eng. 2018, 15, 036016.

194

Marino, A.; Barsotti, J.; de Vito, G.; Filippeschi, C.; Mazzolai, B.; Piazza, V.; Labardi, M.; Mattoli, V.; Ciofani, G. Twophoton lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Appl. Mater. Interfaces 2015, 7, 25574–25579.

195

Hoop, M.; Chen, X. Z.; Ferrari, A.; Mushtaq, F.; Ghazaryan, G.; Tervoort, T.; Poulikakos, D.; Nelson, B.; Pané, S. Ultrasound–mediated piezoelectric differentiation of neuron–like PC12 cells on PVDF membranes. Sci. Rep. 2017, 7, 4028.

196

Lee, Y. –S.; Collins, G.; Arinzeh, T. L. Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomater. 2011, 7, 3877–3886.

197

Eustis, S.; El–Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217.

198

Shapiro, M. G.; Homma, K.; Villarreal, S.; Richter, C. P.; Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 2012, 3, 736.

199

Benham, C. D.; Gunthorpe, M. J.; Davis, J. B. TRPV channels as temperature sensors. Cell Calcium 2003, 33, 479–487.

200

Paviolo, C.; Haycock, J. W.; Yong, J.; Yu, A.; Stoddart, P. R.; McArthur, S. L. Laser exposure of gold nanorods can increase neuronal cell outgrowth. Biotechnol. Bioeng. 2013, 110, 2277–2291.

201

Yong, J.; Needham, K.; Brown, W. G. A.; Nayagam, B. A.; McArthur, S. L.; Yu, A. M.; Stoddart, P. R. Gold–nanorod–assisted near–infrared stimulation of primary auditory neurons. Adv. Healthc. Mater. 2014, 3, 1862–1868.

202

Eom, K.; Kim, J.; Choi, J. M.; Kang, T.; Chang, J. W.; Byun, K. M.; Jun, S. B.; Kim, S. J. Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small 2014, 10, 3853–3857.

203

Yoo, S.; Hong, S.; Choi, Y.; Park, J. H.; Nam, Y. Photothermal inhibition of neural activity with nearinfrared–sensitive nanotransducers. ACS Nano 2014, 8, 8040–8049.

204

Lavoie–Cardinal, F.; Salesse, C.; Bergeron, É.; Meunier, M.; De Koninck, P. Gold nanoparticle–assisted all optical localized stimulation and monitoring of Ca2+ signaling in neurons. Sci. Rep. 2016, 6, 20619.

205

Eom, K.; Im, C.; Hwang, S.; Eom, S.; Kim, T. S.; Jeong, H. S.; Kim, K. H.; Byun, K. M.; Jun, S. B.; Kim, S. J. Synergistic combination of near–infrared irradiation and targeted gold nanoheaters for enhanced photothermal neural stimulation. Biomed. Opt. Express 2016, 7, 1614–1625.

206

Yoo, S.; Kim, R.; Park, J. H.; Nam, Y. Electro–optical neural platform integrated with nanoplasmonic inhibition interface. ACS Nano 2016, 10, 4274–4281.

207

Bazard, P.; Frisina, R. D.; Walton, J. P.; Bhethanabotla, V. R. Nanoparticle–based plasmonic transduction for modulation of electrically excitable cells. Sci. Rep. 2017, 7, 7803.

208

Tay, A.; Di Carlo, D. Magnetic nanoparticle–based mechanical stimulation for restoration of mechano–sensitive ion channel equilibrium in neural networks. Nano Lett. 2017, 17, 886–892.

209

Stanley, S. A.; Gagner, J. E.; Damanpour, S.; Yoshida, M.; Dordick, J. S.; Friedman, J. M. Radio–wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 2012, 336, 604–608.

210

Stanley, S. A.; Sauer, J.; Kane, R. S.; Dordick, J. S.; Friedman, J. M. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 2015, 21, 92–98.

211

Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond–timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 2005, 8, 1263–1268.

212

Lin, J. Y.; Knutsen, P. M.; Muller, A.; Kleinfeld, D.; Tsien, R. Y. ReaChR: A red–shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 2013, 16, 1499–1508.

213

Klapoetke, N. C.; Murata, Y.; Kim, S. S.; Pulver, S. R.; Birdsey–Benson, A.; Cho, Y. K.; Morimoto, T. K.; Chuong, A. S.; Carpenter, E. J.; Tian, Z. J. et al. Independent optical excitation of distinct neural populations. Nat. Methods 2014, 11, 338–346.

214

Chuong, A. S.; Miri, M. L.; Busskamp, V.; Matthews, G. A.; Acker, L. C.; S?rensen, A. T.; Young, A.; Klapoetke, N. C.; Henninger, M. A.; Kodandaramaiah, S. B. et al. Noninvasive optical inhibition with a red–shifted microbial rhodopsin. Nat. Neurosci. 2014, 17, 1123–1129.

215

Pansare, V. J.; Hejazi, S.; Faenza, W. J.; Prud'homme, R. K. Review of long–wavelength optical and NIR imaging materials: Contrast agents, fluorophores, and multifunctional nano carriers. Chem. Mater. 2012, 24, 812–827.

216

Hososhima, S.; Yuasa, H.; Ishizuka, T.; Hoque, M. R.; Yamashita, T.; Yamanaka, A.; Sugano, E.; Tomita, H.; Yawo, H. Near–infrared (NIR) up–conversion optogenetics. Sci. Rep. 2015, 5, 16533.

217

Bansal, A.; Liu, H. C.; Jayakumar, M. K. G.; Andersson–Engels, S.; Zhang, Y. Quasi–continuous wave near–infrared excitation of upconversion nanoparticles for optogenetic manipulation of C. elegans. Small 2016, 12, 1732–1743.

218

He, L.; Zhang, Y. W; Ma, G. L.; Tan, P.; Li, Z. J.; Zang, S. B.; Wu, X.; Jing, J.; Fang, S. H.; Zhou, L. J. et al. Near–infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. eLife 2015, 4, e10024.

219

Wu, X.; Zhang, Y. W.; Takle, K.; Bilsel, O.; Li, Z. J.; Lee, H.; Zhang, Z. J.; Li, D. S.; Fan, W.; Duan, C. Y. et al. Dye–sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060–1066.

220

Huang, K.; Dou, Q. Q.; Loh, X. J. Nanomaterial mediated optogenetics: Opportunities and challenges. RSC Adv. 2016, 6, 60896–60906.

221

El Haj, A. J.; Hughes, S.; Dobson, J. Manipulation of ion channels using magnetic micro–and nanoparticle cytometry. Comp. Biochem. Phys. A 2003, 134, S110.

222

Hughes, S.; El Haj, A. J.; Dobson, J. Magnetic micro–and nanoparticle mediated activation of mechanosensitive ion channels. Med. Eng. Phys. 2005, 27, 754–762.

223

Kunze, A.; Tseng, P.; Godzich, C.; Murray, C.; Caputo, A.; Schweizer, F. E.; Di Carlo, D. Engineering cortical neuron polarity with nanomagnets on a chip. ACS Nano 2015, 9, 3664–3676.

224

Etoc, F.; Vicario, C.; Lisse, D.; Siaugue, J. M.; Piehler, J.; Coppey, M.; Dahan, M. Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution. Nano Lett. 2015, 15, 3487–3494.

225

Wang, N.; Butler, J. P.; Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993, 260, 1124–1127.

226

Wang, N.; Ingber, D. E. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 1994, 66, 1281–1289.

227

Wang, N.; Ingber, D. E. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem. Cell Biol. 1995, 73, 327–335.

228

Glogauer, M.; Ferrier, J.; McCulloch, C. A. Magnetic fields applied to collagen–coated ferric oxide beads induce stretch–activated Ca2+ flux in fibroblasts. Am. J. Physiol. 1995, 269, C1093–1104.

229

Hughes, S.; McBain, S.; Dobson, J.; El Haj, A. J. Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface 2008, 5, 855–863.

230

Matthews, B. D.; Thodeti, C. K.; Tytell, J. D.; Mammoto, A.; Overby, D. R.; Ingber, D. E. Ultra–rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface β1 integrins. Integr. Biol. 2010, 2, 435–442.

231

Mannix, R. J.; Kumar, S.; Cassiola, F.; Montoya–Zavala, M.; Feinstein, E.; Prentiss, M.; Ingber, D. E. Nanomagnetic actuation of receptor–mediated signal transduction. Nat. Nanotechnol. 2008, 3, 36–40.

232

Cho, M. H.; Lee, E. J.; Son, M.; Lee, J. H.; Yoo, D.; Kim, J.; Park, S. W.; Shin, J. S.; Cheon, J. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater. 2012, 11, 1038–1043.

233

Bharde, A. A.; Palankar, R.; Fritsch, C.; Klaver, A.; Kanger, J. S.; Jovin, T. M.; Arndt–Jovin, D. J. Magnetic nanoparticles as mediators of ligand–free activation of EGFR signaling. PLoS One 2013, 8, e68879.

234

Steketee, M. B.; Moysidis, S. N.; Jin, X. L.; Weinstein, J. E.; Pita–Thomas, W.; Raju, H. B.; Iqbal, S.; Goldberg, J. L. Nanoparticle–mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc. Natl. Acad. Sci. USA 2011, 108, 19042–19047.

235

Tay, A. K.; Dhar, M.; Pushkarsky, I.; Di Carlo, D. Research highlights: Manipulating cells inside and out. Lab Chip 2015, 15, 2533–2537.

236

Miesenböck, G. Optogenetic control of cells and circuits. Annu. Rev. Cell. Dev. Biol. 2011, 27, 731–758.

237

Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 2015, 18, 1213–1225.

238

Boyden, E. S. Optogenetics and the future of neuroscience. Nat. Neurosci. 2015, 18, 1200–1201.

239

Boyden, E. S. A history of optogenetics: The development of tools for controlling brain circuits with light. F1000 Biol. Rep. 2011, 3, 11.

240

Kn?pfel, T.; Boyden, E. S. Optogenetics: Tools for controlling and monitoring neuronal activity preface. Prog. Brain Res. 2012, 196, Ⅶ–Ⅷ.

241

Deisseroth, K. Optogenetics. Nat. Methods 2011, 8, 26–29.

242

Gerits, A.; Vanduffel, W. Optogenetics in primates: A shining future? Trends Genet. 2013, 29, 403–411.

243

Madisen, L.; Mao, T. Y.; Koch, H.; Zhuo, J. M.; Berenyi, A.; Fujisawa, S.; Hsu, Y. W. A.; Garcia, A. J., 3rd; Gu, X.; Zanella, S. et al. A toolbox of Cre–dependent optogenetic transgenic mice for light–induced activation and silencing. Nat. Neurosci. 2012, 15, 793–802.

244

Zhang, F.; Vierock, J.; Yizhar, O.; Fenno, L. E.; Tsunoda, S.; Kianianmomeni, A.; Prigge, M.; Berndt, A.; Cushman, J.; Polle, J. et al. The microbial opsin family of optogenetic tools. Cell 2011, 147, 1446–1457.

245

Gautier, A.; Gauron, C.; Volovitch, M.; Bensimon, D.; Jullien, L.; Vriz, S. How to control proteins with light in living systems. Nat. Chem. Biol. 2014, 10, 533–541.

246

Land, B. B.; Brayton, C. E.; Furman, K. E.; Lapalombara, Z.; DiLeone, R. J. Optogenetic inhibition of neurons by internal light production. Front. Behav. Neurosci. 2014, 8, 108.

247

Nihongaki, Y.; Kawano, F.; Nakajima, T.; Sato, M. Photoactivatable CRISPR–Cas9 for optogenetic genome editing. Nat. Biotechnol. 2015, 33, 755–760.

248

Nihongaki, Y.; Yamamoto, S.; Kawano, F.; Suzuki, H.; Sato, M. CRISPR–Cas9–based photoactivatable transcription system. Chem. Biol. 2015, 22, 169–174.

249

Gradinaru, V.; Zhang, F.; Ramakrishnan, C.; Mattis, J.; Prakash, R.; Diester, I.; Goshen, I.; Thompson, K. R.; Deisseroth, K. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 2010, 141, 154–165.

250

Zhang, F.; Wang, L. P.; Brauner, M.; Liewald, J. F.; Kay, K.; Watzke, N.; Wood, P. G.; Bamberg, E.; Nagel, G.; Gottschalk, A. et al. Multimodal fast optical interrogation of neural circuitry. Nature 2007, 446, 633–639.

251

Gradinaru, V.; Thompson, K. R.; Deisseroth, K. eNpHR: A natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 2008, 36, 129–139.

252

Zhao, S. L.; Cunha, C.; Zhang, F.; Liu, Q.; Gloss, B.; Deisseroth, K.; Augustine, G. J.; Feng, G. P. Improved expression of halorhodopsin for light–induced silencing of neuronal activity. Brain Cell Biol. 2008, 36, 141–154.

253

Zhang, F.; Prigge, M.; Beyrière, F.; Tsunoda, S. P.; Mattis, J.; Yizhar, O.; Hegemann, P.; Deisseroth, K. Red–shifted optogenetic excitation: A tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 2008, 11, 631–633.

254

Yizhar, O.; Fenno, L. E.; Prigge, M.; Schneider, F.; Davidson, T. J.; O'Shea, D. J.; Sohal, V. S.; Goshen, I.; Finkelstein, J.; Paz, J. T. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011, 477, 171–178.

255

Chow, B. Y.; Han, X.; Dobry, A. S.; Qian, X. F.; Chuong, A. S.; Li, M. J.; Henninger, M. A.; Belfort, G. M.; Lin, Y. X.; Monahan, P. E. et al. High–performance genetically targetable optical neural silencing by light–driven proton pumps. Nature 2010, 463, 98–102.

256

Mattis, J.; Tye, K. M.; Ferenczi, E. A.; Ramakrishnan, C.; O'Shea, D. J.; Prakash, R.; Gunaydin, L. A.; Hyun, M.; Fenno, L. E.; Gradinaru, V. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 2011, 9, 159–172.

257

Wietek, J.; Wiegert, J. S.; Adeishvili, N.; Schneider, F.; Watanabe, H.; Tsunoda, S. P.; Vogt, A.; Elstner, M.; Oertner, T. G.; Hegemann, P. Conversion of channelrhodopsin into a light–gated chloride channel. Science 2014, 344, 409–412.

258

Govorunova, E. G.; Sineshchekov, O. A.; Janz, R.; Liu, X. Q.; Spudich, J. L. Natural light–gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science 2015, 349, 647–650.

259

Lin, J. Y.; Lin, M. Z.; Steinbach, P.; Tsien, R. Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 2009, 96, 1803–1814.

260

Berndt, A.; Schoenenberger, P.; Mattis, J.; Tye, K. M.; Deisseroth, K.; Hegemann, P.; Oertner, T. G. Highefficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc. Natl. Acad. Sci. USA 2011, 108, 7595–7600.

261

Matsuzaki, M.; Ellis–Davies, G. C.; Nemoto, T.; Miyashita, Y.; Iino, M.; Kasai, H. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 2001, 4, 1086–1092.

262

Gorostiza, P.; Isacoff, E. Y. Optical switches for remote and noninvasive control of cell signaling. Science 2008, 322, 395–399.

263

Dobson, J. Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 2008, 3, 139–143.

264

Monzel, C.; Vicario, C.; Piehler, J.; Coppey, M.; Dahan, M. Magnetic control of cellular processes using biofunctional nanoparticles. Chem. Sci. 2017, 8, 7330–7338.

265

Patel, A. J.; Honoré, E. Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci. 2001, 24, 339–346.

266

Wheeler, M. A.; Smith, C. J.; Ottolini, M.; Barker, B. S.; Purohit, A. M.; Grippo, R. M.; Gaykema, R. P.; Spano, A. J.; Beenhakker, M. P.; Kucenas, S. et al. Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 2016, 19, 756–761.

267

McKemy, D. D.; Neuhausser, W. M.; Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416, 52–58.

268

Stanley, S. A.; Kelly, L.; Latcha, K. N.; Schmidt, S. F.; Yu, X. F.; Nectow, A. R.; Sauer, J.; Dyke, J. P.; Dordick, J. S.; Friedman, J. M. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 2016, 531, 647–650.

269

Qin, S. Y.; Yin, H.; Yang, C. L.; Dou, Y. F.; Liu, Z. M.; Zhang, P.; Yu, H.; Huang, Y. L.; Feng, J.; Hao, J. F. et al. A magnetic protein biocompass. Nat. Mater. 2016, 15, 217–226.

270

Long, X. Y.; Ye, J.; Zhao, D.; Zhang, S. J. Magnetogenetics: Remote non–invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci. Bull. 2015, 60, 2107–2119.

271

Ibsen, S.; Tong, A.; Schutt, C.; Esener, S.; Chalasani, S. H. Sonogenetics is a non–invasive approach to activating neurons in Caenorhabditis elegans. Nat. Commun. 2015, 6, 8264.

272

Kubanek, J.; Shi, J. Y.; Marsh, J.; Chen, D.; Deng, C. R.; Cui, J. M. Ultrasound modulates ion channel currents. Sci. Rep. 2016, 6, 24170.

273

Spira, M. E.; Hai, A. Multi–electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 2013, 8, 83–94.

274

Berger, T. W.; Baudry, M.; Brinton, R. D.; Liaw, J. –S.; Marmarelis, V. Z.; Park, A. Y.; Sheu, B. J.; Tanguay, A. R. Brain–implantable biomimetic electronics as the next era in neural prosthetics. Proc. IEEE 2001, 89, 993–1012.

275

Berger, T. W.; Hampson, R. E.; Song, D.; Goonawardena, A.; Marmarelis, V. Z.; Deadwyler, S. A. A cortical neural prosthesis for restoring and enhancing memory. J. Neural Eng. 2011, 8, 046017.

276

Ezzyat, Y.; Wanda, P. A.; Levy, D. F.; Kadel, A.; Aka, A.; Pedisich, I.; Sperling, M. R.; Sharan, A. D.; Lega, B. C.; Burks, A. et al. Closed–loop stimulation of temporal cortex rescues functional networks and improves memory. Nat. Commun. 2018, 9, 365.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 March 2018
Revised: 05 June 2018
Accepted: 06 June 2018
Published: 10 July 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

L. G. is supported by The Defense Advanced Research Projects Agency (No. D17AP00031) of the USA. The views, opinions, and/or findings contained in this article are those of the author and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

C. X. is supported by National Institute of Neurological Disorders and Stroke through Grant # R01NS102917, Welch Foundation through Grant # F-1941-20170325, and Department of Defense through Clinical and Rehabilitative Medicine Research Program under award No. W81XWH-16-1-0580.

Return