Journal Home > Volume 11 , Issue 11

The prospect of combining both magnetic and plasmonic properties in a single nanoparticle promises both valuable insights on the properties of such systems from a fundamental viewpoint and numerous possibilities for technological applications. However, the combination of two of the most prominent metallic candidates—iron and silver—has presented numerous experimental difficulties because their thermodynamic properties impede miscibility and even coalescence. Herein, we present the thorough characterization of physically prepared Fe50Ag50 nanoparticles embedded in carbon and silica matrices via electron microscopy, optical spectroscopy, magnetometry and synchrotron-based X-ray spectroscopy. Iron and silver segregate completely into structures resembling fried eggs, with a nearly spherical, crystallized silver part surrounded by an amorphous structure of iron carbide or oxide, depending on the environment of the particles. Consequently, the particles exhibit both plasmonic absorption corresponding to the silver nanospheres in an oxide environment and a reduced but measurable magnetic response. The suitability of such nanoparticles for technological applications is discussed from the viewpoint of their high chemical reactivity with their environment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nano-fried-eggs: Structural, optical, and magnetic characterization of physically prepared iron-silver nanoparticles

Show Author's information Julien Ramade1Nicolas Troc1Olivier Boisron1Michel Pellarin1Marie-Ange Lebault1Emmanuel Cottancin1Vitor T. A. Oiko2Rafael Cabreira Gomes2Varlei Rodrigues2Matthias Hillenkamp1,2( )
Univ. Lyon Université Claude Bernard Lyon 1CNRS, UMR5306, Institut Lumière Matière, F-69622, VilleurbanneFrance
Instituto de Física Gleb WataghinUNICAMP, CP 6165, 13083-970, Campinas, SPBrazil

Abstract

The prospect of combining both magnetic and plasmonic properties in a single nanoparticle promises both valuable insights on the properties of such systems from a fundamental viewpoint and numerous possibilities for technological applications. However, the combination of two of the most prominent metallic candidates—iron and silver—has presented numerous experimental difficulties because their thermodynamic properties impede miscibility and even coalescence. Herein, we present the thorough characterization of physically prepared Fe50Ag50 nanoparticles embedded in carbon and silica matrices via electron microscopy, optical spectroscopy, magnetometry and synchrotron-based X-ray spectroscopy. Iron and silver segregate completely into structures resembling fried eggs, with a nearly spherical, crystallized silver part surrounded by an amorphous structure of iron carbide or oxide, depending on the environment of the particles. Consequently, the particles exhibit both plasmonic absorption corresponding to the silver nanospheres in an oxide environment and a reduced but measurable magnetic response. The suitability of such nanoparticles for technological applications is discussed from the viewpoint of their high chemical reactivity with their environment.

Keywords: silver, nanoalloy, bimetallic nanoparticles, iron, FeAg, optical spectroscopy, magnetometry

References(64)

1

Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters. Springer Series in Materials Science; Springer: Berlin, 1995.

DOI
2

Coey, J. M. D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, 2010.

3

Alloyeau, D.; Mottet, C.; Ricolleau, C. Nanoalloys: Synthesis, Structure and Properties; Springer-Verlag: London, 2012.

DOI
4

Calvo, F. Nanoalloys: From Fundamentals to Emergent Applications; Elsevier: USA, 2013.

5

Ferrando, R. Structure and properties of nanoalloys. In Frontiers of Nanoscience; Elsevier: Amsterdam, 2016; pp 2–337.

DOI
6

García, S.; Zhang, L.; Piburn, G. W.; Henkelman, G.; Humphrey, S. M. Microwave synthesis of classically immiscible rhodium–silver and rhodium–gold alloy nanoparticles: Highly active hydrogenation catalysts. ACS Nano 2014, 8, 11512–11521.

7

Sotiriou, G. A.; Visbal-Onufrak, M. A.; Teleki, A.; Juan, E. J.; Hirt, A. M.; Pratsinis, S. E.; Rinaldi, C. Thermal energy dissipation by SiO2-coated plasmonic-superparamagnetic nanoparticles in alternating magnetic fields. Chem. Mater. 2013, 25, 4603–4612.

8

Armelles, G.; Cebollada, A.; García-Martín, A.; González, M. U. Magnetoplasmonics: Combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 2013, 1, 10–35.

9

Peng, S.; Lei, C. H.; Ren, Y.; Cook, R. E.; Sun, Y. G. Plasmonic/magnetic bifunctional nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 3158–3163.

10

Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742.

11

Wang, J. F.; Wu, X. Z.; Wang, C. W.; Shao, N. S.; Dong, P. T.; Xiao, R.; Wang, S. Q. Magnetically assisted surfaceenhanced Raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Appl. Mater. Interfaces 2015, 37, 20919–20929.

12

Bogani, L.; Cavigli, L.; de Julián Fernández, C.; Mazzoldi, P.; Mattei, G.; Gurioli, M.; Dressel, M.; Gatteschi, D. Photocoercivity of nano-stabilized Au: Fe superparamagnetic nanoparticles. Adv. Mater. 2010, 22, 4054–4058.

13

Lu, L. Y.; Zhang, W. T.; Wang, D.; Xu, X. G.; Miao, J.; Jiang, Y. Fe@Ag core–shell nanoparticles with both sensitive plasmonic properties and tunable magnetism. Mater. Lett. 2010, 64, 1732–1734.

14

Moscoso-Londoño, O.; Muraca, D.; Tancredi, P.; Cosio-Castañeda, C.; Pirota, K. R.; Socolovsky, L. M. Physicochemical studies of complex silver–magnetite nanoheterodimers with controlled morphology. J. Phys. Chem. C 2014, 118, 13168–13176.

15

Mahmoudi, M.; Serpooshan, V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 2012, 6, 2656–2664.

16

Lin, A. Y.; Young, J. K.; Nixon, A. V.; Drezek, R. A. Encapsulated Fe3O4/Ag complexed cores in hollow gold nanoshells for enhanced theranostic magnetic resonance imaging and photothermal therapy. Small 2014, 10, 3246–3251.

17

Han, X. X.; Schmidt, A. M.; Marten, G.; Fischer, A.; Weidinger, I. M.; Hildebrandt, P. Magnetic silver hybrid nanoparticles for surface-enhanced resonance Raman spectroscopic detection and decontamination of small toxic molecules. ACS Nano 2013, 7, 3212–3220.

18

Wang, H.; Shen, J.; Li, Y. Y.; Wei, Z. Y.; Cao, G. X.; Gai, Z.; Hong, K. L.; Banerjee, P.; Zhou, S. Q. Porous carbon protected magnetite and silver hybrid nanoparticles: Morphological control, recyclable catalysts, and multicolor cell imaging. ACS Appl. Mater. Interfaces 2013, 5, 9446–9453.

19

Andreazza, P.; Pierron-Bohnes, V.; Tournus, F.; Andreazza- Vignolle, C.; Dupuis, V. Structure and order in cobalt/ platinum-type nanoalloys: From thin films to supported clusters. Surf. Sci. Rep. 2015, 70, 188–258.

20

Swartzendruber, L. J. The Ag–Fe (silver–iron) system. Bull. Alloy Phase Diag. 1984, 5, 560–564.

21

Kataoka, N.; Sumiyama, K.; Nakamura, Y. Nonequilibrium crystalline Fe-Ag alloys vapour-quenched on liquid-nitrogencooled substrates. J. Phys. F: Met. Phys. 1988, 18, 1049–1056.

22

Wan, H.; Tsoukatos, A.; Hadjipanayis, G. C.; Li, Z. G.; Liu, J. Direct evidence of phase separation in as-deposited Fe(Co)-Ag films with giant magnetoresistance. Phys. Rev. B 1994, 49, 1524–1527.

23

Sakurai, M.; Makhlouf, S. A.; Sumiyama, K.; Wakoh, K.; Suzuki, K. Extended X-ray absorption fine structure study on local structure around Fe atoms in Fe/Ag granular materials. Jpn. J. Appl. Phys. 1994, 33, 4090.

24

Yaws, C. L. Chemical Properties Handbook: Physical, Thermodynamics, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals; McGraw-Hill: New York, 1999.

25

Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.

26

Pellarin, M.; Issa, I.; Langlois, C.; Lebeault, M. -A.; Ramade, J.; Lermé, J.; Broyer, M.; Cottancin, E. Plasmon spectroscopy and chemical structure of small bimetallic Cu(1–x)Agx clusters. J. Phys. Chem. C 2015, 119, 5002–5012.

27

Carroll, K. J.; Hudgins, D. M.; Spurgeon, S.; Kemner, K. M.; Mishra, B.; Boyanov, M. I.; Brown, L. W., Ⅲ.; Taheri, M. L.; Carpenter, E. E. One-pot aqueous synthesis of Fe and Ag core/shell nanoparticles. Chem. Mater. 2010, 22, 6291–6269.

28

Wang, L.; Yang, K.; Clavero, C.; Nelson, A. J.; Carroll, K. J.; Carpenter, E. E.; Lukaszew, R. A. Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe–Ag nanoparticles. J. Appl. Phys. 2010, 107, 09B303.

29

Luo, S.; Yang, S. G.; Wang, X. D.; Sun, C. Reductive degradation of tetrabromobisphenol A over iron–silver bimetallic nanoparticles under ultrasound radiation. Chemosphere 2010, 79, 672–678.

30

Marková, Z.; Šišková, K. M.; Filip, J.; Čuda, J.; Kolář, M.; Šafářová, K.; Medřík, I.; Zbořil, R. Air stable magnetic bimetallic Fe–Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ. Sci. Technol. 2013, 47, 5285–5293.

31

Amendola, V.; Scaramuzza, S.; Agnoli, S.; Granozzi, G.; Meneghetti, M.; Campo, G.; Bonanni, V.; Pineider, F.; Sangregorio, C.; Ghigna, P. et al. Laser generation of iron-doped silver nanotruffles with magnetic and plasmonic properties. Nano Res. 2015, 8, 4007–4023.

32

Scaramuzza, S.; Badocco, D.; Pastore, P.; Coral, D. F.; Fernández van Raap, M. B.; Amendola, V. Magnetically assembled SERS substrates composed of iron-silver nanoparticles obtained by laser ablation in liquid. ChemPhysChem 2017, 18, 1026–1034.

33

Andrews, M. P.; O'Brien, S. C. Gas-phase "molecular alloys" of bulk immiscible elements: Iron-silver (FexAgy). J. Phys. Chem. 1992, 96, 8233–8241.

34

Perez, A.; Dupuis, V.; Tuaillon-Combes, J.; Bardotti, L.; Prevel, B.; Bernstein, E.; Mélinon, P.; Favre, L.; Hannour, A.; Jamet, M. Functionalized cluster-assembled magnetic nanostructures for applications to high integration-density devices. Adv. Eng. Mater. 2005, 7, 475–485.

35

Rousset, J. L.; Cadrot, A. M.; Cadete Santos Aires, F. J.; Renouprez, A.; Mélinon, P.; Perez, A.; Pellarin, M.; Vialle, J. L.; Broyer, M. Study of bimetallic Pd–Pt clusters in both free and supported phases. J. Chem. Phys. 1995, 102, 8574–8585.

36

Tournus, F.; Blanc, N.; Tamion, A.; Hillenkamp, M.; Dupuis, V. Dispersion of magnetic anisotropy in size-selected CoPt clusters. Phys. Rev. B 2010, 81, 220405.

37

Tournus, F.; Blanc, N.; Tamion, A.; Dupuis, V.; Epicier, T. Coalescence-free L10 ordering of embedded CoPt nanoparticles. J. Appl. Phys. 2011, 109, 07B722.

38

Tamion, A.; Hillenkamp, M.; Hillion, A.; Tournus, F.; Tuaillon-Combes, J.; Boisron, O.; Zafeiratos, S.; Dupuis, V. Demixing in cobalt clusters embedded in a carbon matrix evidenced by magnetic measurements. J. Appl. Phys. 2011, 110, 063904.

39

Hillion, A.; Cavallin, A.; Vlaic, S.; Tamion, A.; Tournus, F.; Khadra, G.; Dreiser, J.; Piamonteze, C.; Nolting, F.; Rusponi, S. et al. Low temperature ferromagnetism in chemically ordered FeRh nanocrystals. Phys. Rev. Lett. 2013, 110, 087207.

40

Dupuis, V.; Khadra, G.; Linas, S.; Hillion, A.; Gragnaniello, L.; Tamion, A.; Tuaillon-Combes, J.; Bardotti, L.; Tournus, F.; Otero, E. et al. Magnetic moments in chemically ordered mass-selected CoPt and FePt clusters. J. Magn. Magn. Mater. 2015, 383, 73–77.

41

Dupuis, V.; Robert, A.; Hillion, A.; Khadra, G.; Blanc, N.; Le Roy, D.; Tournus, F.; Albin, C.; Boisron, O.; Tamion, A. Cubic chemically ordered FeRh and FeCo nanomagnets prepared by mass-selected low-energy cluster-beam deposition: A comparative study. Beilstein J. Nanotechnol. 2016, 7, 1850–1860.

42

Navrotsky, A.; Ma, C. C.; Lilova, K.; Birkner, N. Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science 2010, 330, 199–201.

43
Pierre Stadelmann. JEMS Electron Microscopy Simulation Software. http://www.jems-saas.ch or https://cime.epfl.ch/research/jems (accessed Jan 24, 2018).
44

Hillenkamp, M.; Di Domenicantonio, G.; Eugster, O.; Félix, C. Instability of Ag nanoparticles in SiO2 at ambient conditions. Nanotechnology 2007, 18, 015702.

45

Cottancin, E.; Broyer, M.; Lermé, J.; Pellarin, M. Optical properties of metal clusters and nanoparticles. In Handbook of Nanophysics: Nanoelectronics and Nanophotonics; Sattler, K. D., Ed.; CRC Press: Boca Raton, FL, USA, 2011.

46

Chen, C. T.; Idzerda, Y. U.; Lin, H. -J.; Smith, N. V.; Meigs, G.; Chaban, E.; Ho, G. H.; Pellegrin, E.; Sette, F. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 1995, 75, 152–155.

47

Šipr, O.; Ebert, H. Theoretical Fe L2, 3- and K-edge X-ray magnetic circular dichroism spectra of free iron clusters. Phys. Rev. B 2005, 72, 134406.

48

Pellegrin, E.; Hagelstein, M.; Doyle, S.; Moser, H. O.; Fuchs, J.; Vollath, D.; Schuppler, S.; James, M. A.; Saxena, S. S.; Niesen, L. et al. Characterization of nanocrystalline γ-Fe2O3 with synchrotron radiation techniques. Phys. Status Solidi (b) 1999, 215, 797–801.

DOI
49

Furlan, A.; Jansson, U.; Lu, J.; Hultman, L.; Magnuson, M. Structure and bonding in amorphous iron carbide thin films. J. Phys. : Condens. Matter 2015, 27, 045002.

50

Okamoto, H. The C-Fe (carbon-iron) system. J. Phase Equil. 1992, 13, 543–565.

51

Hofer, L. J. E.; Cohn, E. M. Saturation magnetizations of iron carbides. J. Am. Chem. Soc. 1959, 81, 1576–1582.

52

Xu, X. S.; Yin, S. Y.; Moro, R.; Liang, A.; Bowlan, J.; de Heer, W. A. Metastability of free cobalt and iron clusters: A possible precursor to bulk ferromagnetism. Phys. Rev. Lett. 2011, 107, 057203.

53

Balan, A.; Derlet, P. M.; Rodríguez, A. F.; Bansmann, J.; Yanes, R.; Nowak, U.; Kleibert, A.; Nolting, F. Direct observation of magnetic metastability in individual iron nanoparticles. Phys. Rev. Lett. 2014, 112, 107201.

54

Tamion, A.; Hillenkamp, M.; Tournus, F.; Bonet, E.; Dupuis, V. Accurate determination of the magnetic anisotropy in cluster-assembled nanostructures. Appl. Phys. Lett. 2009, 95, 062503.

55

Hillion, A.; Tamion, A.; Tournus, F.; Gaier, O.; Bonet, E.; Albin, C.; Dupuis, V. Advanced magnetic anisotropy determination through isothermal remanent magnetization of nanoparticles. Phys. Rev. B 2013, 88, 094419.

56

Oyarzún, S.; Tamion, A.; Tournus, F.; Dupuis, V.; Hillenkamp, M. Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: From shape to surface. Sci. Rep. 2015, 5, 14749.

57

Dupuis, V.; Khadra, G.; Hillion, A.; Tamion, A.; Tuaillon- Combes, J.; Bardotti, L.; Tournus, F. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition. Phys. Chem. Chem. Phys. 2015, 17, 27996.

58

Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932–934.

59

Li, C. R.; Lu, N. P.; Xu, Q.; Mei, J.; Dong, W. J.; Fu, J. L.; Cao, Z. X. Decahedral and icosahedral twin crystals of silver: Formation and morphology evolution. J. Cryst. Growth 2011, 319, 88–95.

60

Volk, A.; Thaler, P.; Koch, M.; Fisslthaler, E.; Grogger, W.; Ernst, W. E. High resolution electron microscopy of Agclusters in crystalline and non-crystalline morphologies grown inside superfluid helium nanodroplets. J. Chem. Phys. 2013, 138, 214312.

61

Barke, I.; Hartmann, H.; Rupp, D.; Fluckiger, L.; Sauppe, M.; Adolph, M.; Schorb, S.; Bostedt, C.; Treusch, R.; Peltz, C. et al. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering. Nat. Commun. 2015, 6, 6187.

62

Mukherjee, P.; Zhang, Y.; Kramer, M. J.; Lewis, L. H.; Shield, J. E. L10 structure formation in slow-cooled Fe–Au nanoclusters. Appl. Phys. Lett. 2012, 100, 211911.

63

Mukherjee, P.; Manchanda, P.; Kumar, P.; Zhou, L.; Kramer, M. J.; Kashyap, A.; Skomski, R.; Sellmyer, D.; Shield, J. E. Size-induced chemical and magnetic ordering in individual Fe–Au nanoparticles. ACS Nano 2014, 8, 8113–8120.

64

Binns, C.; Qureshi, M. T.; Peddis, D.; Baker, S. H.; Howes, P. B.; Boatwright, A.; Cavill, S. A.; Dhesi, S. S.; Lari, L.; Kröger, R. et al. Exchange bias in Fe@Cr core–shell nanoparticles. Nano Lett. 2013, 13, 3334–3339.

File
12274_2018_2125_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 January 2018
Revised: 06 June 2018
Accepted: 08 June 2018
Published: 25 June 2018
Issue date: November 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

Financial support through a "Chaire Française dans l'État de São Paulo" and from the São Paulo Research Foundation (FAPESP, 2013/14262-7 and 16/12807-4) for M. H., from the Science Without Borders "Special Visiting Scientist" program, contract number 88881.030488/2013-01, and from the Region Rhône- Alpes in the frame of an ARC (Academic Research Community) doctoral grant for J. R. is gratefully acknowledged. This work was performed using the Lyon Cluster Research Platform PLYRA, the Lyon Center for Microscopy CLYM, the Lyon Center for Magnetometry CML and at the Brazilian Nanotechnology National Laboratory (LNNano). The Laboratório Nacional de Luz Síncrotron (LNLS, Campinas, Brazil) is thanked for the use of the PGM beamline. We gratefully acknowledge technical support from C. Albin, C. Clavier and N. Blanchard in Lyon and from A. de Siervo, J. Bettini and J. Cezar in Campinas.

Return