Journal Home > Volume 11 , Issue 10

Interest in temperature-responsive polymers has steadily grown over the past several decades, and numerous studies have been dedicated to developing temperature sensitive polymers that can be constructed into new smart materials for biomedical applications. Phase behavior of a temperature-responsive polymer plays a pivotal role in determining its biological performance in certain conditions. In addition to the additives (such as salts and proteins) in aqueous solutions, molecular weight, molecular weight distribution, and structural or compositional factors can also significantly affect the transition temperatures of the polymers. This review comprehensively describes well-established and newly developed synthetic strategies for preparing temperature-responsive polymers. The structural and compositional parameters that affect the transition temperatures and self-assembly behavior are discussed. Finally, the biomedical applications of the temperature-responsive polymers in drug delivery, immunotherapy, tissue engineering, and diagnosis are summarized.


menu
Abstract
Full text
Outline
About this article

Temperature-responsive polymers: Synthesis, properties, and biomedical applications

Show Author's information Shenglin Qiao1,2Hao Wang1,2( )
CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)Beijing100190China
University of Chinese Academy of Sciences (UCAS)Beijing100049China

Abstract

Interest in temperature-responsive polymers has steadily grown over the past several decades, and numerous studies have been dedicated to developing temperature sensitive polymers that can be constructed into new smart materials for biomedical applications. Phase behavior of a temperature-responsive polymer plays a pivotal role in determining its biological performance in certain conditions. In addition to the additives (such as salts and proteins) in aqueous solutions, molecular weight, molecular weight distribution, and structural or compositional factors can also significantly affect the transition temperatures of the polymers. This review comprehensively describes well-established and newly developed synthetic strategies for preparing temperature-responsive polymers. The structural and compositional parameters that affect the transition temperatures and self-assembly behavior are discussed. Finally, the biomedical applications of the temperature-responsive polymers in drug delivery, immunotherapy, tissue engineering, and diagnosis are summarized.

Keywords: nanomaterial, self-assembly, phase transition, nanomedicine, temperature-responsive polymer

References(115)

1

Scarpa, J. S.; Mueller, D. D.; Klotz, I. M. Slow hydrogendeuterium exchange in a non-. alpha. -helical polyamide. J. Am. Chem. Soc. 1967, 89, 6024–6030.

2

Qiao, S. -L.; Wang, Y.; Lin, Y. -X.; An, H. -W.; Ma, Y.; Li, L. -L.; Wang, L.; Wang, H. Thermo-controlled in situ phase transition of polymer–peptides on cell surfaces for highperformance proliferative inhibition. ACS Appl. Mater. Interfaces 2016, 8, 17016–17022.

3

Wang, Y.; Qiao, S. -L.; Wang, H. Facile synthesis of peptide cross-linked nanogels for tumor metastasis inhibition. ACS Appl. Nano Mater. 2018, 1, 785–792.

4

Qiao, S. -L.; Ma, Y.; Wang, Y.; Lin, Y. -X.; An, H. -W.; Li, L. -L.; Wang, H. General approach of stimuli-induced aggregation for monitoring tumor therapy. ACS Nano 2017, 11, 7301–7311.

5

Li, L. -L.; Qiao, S. -L.; Liu, W. -J.; Ma, Y.; Wan, D.; Pan, J.; Wang, H. Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions. Nat. Commun. 2017, 8, 1276.

6

Huang, F.; Wang, J. Z.; Qu, A. R.; Shen, L. L.; Liu, J. J.; Liu, J. F.; Zhang, Z. K.; An, Y. L.; Shi, L. Q. Maintenance of amyloid β peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles. Angew. Chem., Int. Ed. 2014, 53, 8985–8990.

7

Wang, C.; Zhang, G. Y.; Liu, G. H.; Hu, J. M.; Liu, S. Y. Photo-and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. J. Control. Release 2017, 259, 149–159.

8

He, C. L.; Zhao, C. W.; Chen, X. S.; Guo, Z. J.; Zhuang, X. L.; Jing, X. B. Novel pH-and temperature-responsive block copolymers with tunable pH-responsive range. Macromol. Rapid Commun. 2008, 29, 490–497.

9

Roy, D.; Brooks, W. L. A.; Sumerlin, B. S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013, 42, 7214–7243.

10

Cobo, I.; Li, M.; Sumerlin, B. S.; Perrier, S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat. Mater. 2015, 14, 143–159.

11

Figg, C. A.; Simula, A.; Gebre, K. A.; Tucker, B. S.; Haddleton, D. M.; Sumerlin, B. S. Polymerization-induced thermal self-assembly (PITSA). Chem. Sci. 2015, 6, 1230–1236.

12

Grubbs, R. B.; Sun, Z. Shape-changing polymer assemblies. Chem. Soc. Rev. 2013, 42, 7436–7445.

13

Xu, J. T.; Jung, K.; Atme, A.; Shanmugam, S.; Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 2014, 136, 5508–5519.

14

Lv, Y.; Liu, Z. F.; Zhu, A. Q.; An, Z. S. Glucose oxidase deoxygenation–redox initiation for RAFT polymerization in air. J. Polym. Sci. 2017, 55, 164–174.

15

Blasco, E.; Sims, M. B.; Goldmann, A. S.; Sumerlin, B. S.; Barner-Kowollik, C. 50th anniversary perspective: Polymer functionalization. Macromolecules 2017, 50, 5215–5252.

16

Gody, G.; Maschmeyer, T.; Zetterlund, P. B.; Perrier, S. Rapid and quantitative one-pot synthesis of sequencecontrolled polymers by radical polymerization. Nat. Commun. 2013, 4, 2505.

17

Li, H. M.; Li, M.; Yu, X.; Bapat, A. P.; Sumerlin, B. S. Block copolymer conjugates prepared by sequentially grafting from proteins via RAFT. Polym. Chem. 2011, 2, 1531–1535.

18

Ma, Y.; Qiao, S. -L.; Wang, Y.; Lin, Y. -X.; An, H. -W.; Wu, X. -C.; Wang, L.; Wang, H. Nanoantagonists with nanophasesegregated surfaces for improved cancer immunotherapy. Biomaterials 2018, 156, 248–257.

19

Matsumoto, A.; Tanaka, M.; Matsumoto, H.; Ochi, K.; Moro-Oka, Y.; Kuwata, H.; Yamada, H.; Shirakawa, I.; Miyazawa, T.; Ishii, H. et al. Synthetic "smart gel" provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv. 2017, 3, eaaq0723.

20

Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627.

21

Li, D.; Zheng, Q.; Wang, Y. W.; Chen, H. Combining surface topography with polymer chemistry: Exploring new interfacial biological phenomena. Polym. Chem. 2014, 5, 14–24.

22

Kim, J.; Yoon, J.; Hayward, R. C. Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat. Mater. 2010, 9, 159–164.

23

Liu, J. C.; Wang, N.; Yu, L. J.; Karton, A.; Li, W.; Zhang, W. X.; Guo, F. Y.; Hou, L. L.; Cheng, Q. F.; Jiang, L. et al. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nat. Commun. 2017, 8, 2011.

24

Onoda, M.; Ueki, T.; Tamate, R.; Shibayama, M.; Yoshida, R. Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition. Nat. Commun. 2017, 8, 15862.

25

Kim, Y. S.; Liu, M. J.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 2015, 14, 1002–1007.

26

Stuart, M. A.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113.

27

Matyjaszewski, K.; Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136, 6513–6533.

28

Hill, M. R.; Carmean, R. N.; Sumerlin, B. S. Expanding the scope of RAFT polymerization: Recent advances and new horizons. Macromolecules 2015, 48, 5459–5469.

29

Dou, Q. Q.; Liow, S. S.; Ye, E.; Lakshminarayanan, R.; Loh, X. J. Biodegradable thermogelling polymers: Working towards clinical applications. Adv. Healthc. Mater. 2014, 3, 977–988.

30

Sun, T.; Qing, G. Biomimetic smart interface materials for biological applications. Adv. Mater. 2011, 23, H57–H77.

31

Das, A.; Theato, P. Activated ester containing polymers: Opportunities and challenges for the design of functional macromolecules. Chem. Rev. 2016, 116, 1434–1495.

32

Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663.

33

Place, E. S.; George, J. H.; Williams, C. K.; Stevens, M. M. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 2009, 38, 1139–1151.

34

Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 2012, 37, 18–37.

35

Payne, K. A.; Cunningham, M. F.; Hutchinson, R. A. ARGET ATRP of BMA and BA: Exploring limitations at low copper levels. In Progress in Controlled Radical Polymerization: Mechanisms and Techniques. ACS Symposium Series; Matyjaszewski, K.; Sumerlin, B. S.; Tsarevsky, N. T., Eds.; American Chemical Society: Washington, DC, 2012; Vol. 1100, pp 183–202.

36

Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T. K.; Adnan, N. N. M.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): From fundamentals to bioapplications. Chem. Rev. 2016, 116, 1803–1949.

37

Matyjaszewski, K.; Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 2009, 1, 276–288.

38

Konkolewicz, D.; Magenau, A. J. D.; Averick, S. E.; Simakova, A.; He, H. K.; Matyjaszewski, K. ICAR ATRP with ppm Cu catalyst in water. Macromolecules 2012, 45, 4461–4468.

39

Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J. Y.; Braunecker, W. A.; Tsarevsky, N. V. Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proc. Natl. Acad. Sci. USA 2006, 103, 15309–15314.

40

Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935–939.

41

Dong, H. C.; Matyjaszewski, K. Thermally responsive P(M(EO)2MA-co-OEOMA) copolymers via AGET ATRP in miniemulsion. Macromolecules 2010, 43, 4623–4628.

42

Yamamoto, S. I.; Matyjaszewski, K. ARGET ATRP synthesis of thermally responsive polymers with oligo(ethylene oxide) units. Polym. J. 2008, 40, 496–497.

43

Porsch, C.; Hansson, S.; Nordgren, N.; Malmstrom, E. Thermo-responsive cellulose-based architectures: Tailoring LCST using poly(ethylene glycol) methacrylates. Polym. Chem. 2011, 2, 1114–1123.

44

Konkolewicz, D.; Krys, P.; Góis, J. R.; Mendonça, P. V.; Zhong, M. J.; Wang, Y.; Gennaro, A.; Isse, A. A.; Fantin, M.; Matyjaszewski, K. Aqueous RDRP in the presence of Cu0: The exceptional activity of CuI confirms the SARA ATRP mechanism. Macromolecules 2014, 47, 560–570.

45

Chmielarz, P.; Fantin, M.; Park, S.; Isse, A. A.; Gennaro, A.; Magenau, A. J. D.; Sobkowiak, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization (eATRP). Prog. Polym. Sci. 2017, 69, 47–78.

46

Wenn, B.; Conradi, M.; Carreiras, A. D.; Haddleton, D. M.; Junkers, T. Photo-induced copper-mediated polymerization of methyl acrylate in continuous flow reactors. Polym. Chem. 2014, 5, 3053–3060.

47

Enciso, A. E.; Fu, L. Y.; Russell, A. J.; Matyjaszewski, K. A breathing atom-transfer radical polymerization: Fully oxygen-tolerant polymerization inspired by aerobic respiration of cells. Angew. Chem., Int. Ed. 2018, 130, 945–948.

48

Sumerlin, B. S. Proteins as initiators of controlled radical polymerization: Grafting-from via ATRP and RAFT. ACS Macro Lett. 2012, 1, 141–145.

49

Sigg, S. J.; Seidi, F.; Renggli, K.; Silva, T. B.; Kali, G.; Bruns, N. Horseradish peroxidase as a catalyst for atom transfer radical polymerization. Macromol. Rapid Commun. 2011, 32, 1710–1715.

50

Magenau, A. J. D.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization. Science 2011, 332, 81–84.

51

Pan, X. C.; Tasdelen, M. A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. Photomediated controlled radical polymerization. Prog. Polym. Sci. 2016, 62, 73–125.

52

Wang, Z. H.; Pan, X. C.; Yan, J. J.; Dadashi-Silab, S.; Xie, G. J.; Zhang, J. N.; Wang, Z. H.; Xia, H. S.; Matyjaszewski, K. Temporal control in mechanically controlled atom transfer radical polymerization using low ppm of Cu catalyst. ACS Macro Lett. 2017, 6, 546–549.

53

Chmielarz, P.; Krys, P.; Park, S.; Matyjaszewski, K. PEOb-PNIPAM copolymers via SARA ATRP and eATRP in aqueous media. Polymer 2015, 71, 143–147.

54

Bortolamei, N.; Isse, A. A.; Magenau, A. J. D.; Gennaro, A.; Matyjaszewski, K. Controlled aqueous atom transfer radical polymerization with electrochemical generation of the active catalyst. Angew. Chem., Int. Ed. 2011, 50, 11391–11394.

55

Park, S.; Chmielarz, P.; Gennaro, A.; Matyjaszewski, K. Simplified electrochemically mediated atom transfer radical polymerization using a sacrificial anode. Angew. Chem., Int. Ed. 2015, 127, 2418–2422.

56

Magennis, E. P.; Fernandez-Trillo, F.; Sui, C.; Spain, S. G.; Bradshaw, D. J.; Churchley, D.; Mantovani, G.; Winzer, K.; Alexander, C. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nat. Mater. 2014, 13, 748–755.

57

Fan, G.; Dundas, C. M.; Graham, A. J.; Lynd, N. A.; Keitz, B. K. Shewanella oneidensis as a living electrode for controlled radical polymerization. Proc. Natl. Acad. Sci. USA 2018, 115, 4559–4564.

58

Kali, G.; Silva, T. B.; Sigg, S. J.; Seidi, F.; Renggli, K.; Bruns, N. ATRPases: Using nature's catalysts in atom transfer radical polymerizations. In Progress in Controlled Radical Polymerization: Mechanisms and Techniques. ACS Symposium Series; Matyjaszewski, K.; Sumerlin, B. S.; Tsarevsky, N. T., Eds.; American Chemical Society: Washington, DC, 2012; Vol. 1100, pp 171–181.

59

Ng, Y. H.; di Lena, F.; Chai, C. L. PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water. Chem. Commun. 2011, 47, 6464–6466.

60

Renggli, K.; Spulber, M.; Pollard, J.; Rother, M.; Bruns, N. Biocatalytic ATRP: Controlled radical polymerizations mediated by enzymes. In Green Polymer Chemistry: Biocatalysis and Materials II. ACS Symposium Series; Cheng, H. N.; Gross, R. A.; Smith, P. B., Eds.; American Chemical Society: Washington, DC, 2013; Vol. 1144, pp 163–171.

61

Sigg, S. J.; Seidi, F.; Renggli, K.; Silva, T. B.; Kali, G.; Bruns, N. ATRPases: Enzymes as catalysts for atom transfer radical polymerization. Chimia 2012, 66, 66.

62

Simakova, A.; Mackenzie, M.; Averick, S. E.; Park, S.; Matyjaszewski, K. Bioinspired iron-based catalyst for atom transfer radical polymerization. Angew. Chem., Int. Ed. 2013, 52, 12148–12151.

63

Divandari, M.; Pollard, J.; Dehghani, E.; Bruns, N.; Benetti, E. M. Controlling enzymatic polymerization from surfaces with switchable bioaffinity. Biomacromolecules 2017, 18, 4261–4270.

64

Dinu, M. V.; Spulber, M.; Renggli, K.; Wu, D. L.; Monnier, C. A.; Petri-Fink, A.; Bruns, N. Filling polymersomes with polymers by peroxidase-catalyzed atom transfer radical polymerization. Macromol. Rapid Commun. 2015, 36, 507–514.

65

Ng, Y. -H.; di Lena, F.; Chai, C. L. L. Metalloenzymatic radical polymerization using alkyl halides as initiators. Polym. Chem. 2011, 2, 589–594.

66

Convertine, A. J.; Lokitz, B. S.; Vasileva, Y.; Myrick, L. J.; Scales, C. W.; Lowe, A. B.; McCormick, C. L. Direct synthesis of thermally responsive DMA/NIPAM diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization. Macromolecules 2006, 39, 1724–1730.

67

Kotsuchibashi, Y.; Narain, R. Dual-temperature and pH responsive (ethylene glycol)-based nanogels via structural design. Polym. Chem. 2014, 5, 3061–3070.

68

Mäkinen, L.; Varadharajan, D.; Tenhu, H.; Hietala, S. Triple hydrophilic UCST–LCST block copolymers. Macromolecules 2016, 49, 986–993.

69

Etchenausia, L.; Rodrigues, A. M.; Harrisson, S.; Deniau Lejeune, E.; Save, M. RAFT copolymerization of vinyl acetate and N-vinylcaprolactam: Kinetics, control, copolymer composition, and thermoresponsive self-assembly. Macromolecules 2016, 49, 6799–6809.

70

Wang, K.; Chen, S. L.; Zhang, W. Q. A new family of thermo-, pH-, and CO2-responsive homopolymers of poly[oligo(ethylene glycol) (N-dialkylamino) methacrylate]s. Macromolecules 2017, 50, 4686–4698.

71

Tan, J. B.; Bai, Y. H.; Zhang, X. C.; Huang, C. D.; Liu, D. D.; Zhang, L. Low-temperature synthesis of thermoresponsive diblock copolymer nano-objects via aqueous photoinitiated polymerization-induced self-assembly (Photo-PISA) using thermoresponsive macro-RAFT agents. Macromol. Rapid Commun. 2016, 37, 1434–1440.

72

De, P.; Li, M.; Gondi, S. R.; Sumerlin, B. S. Temperatureregulated activity of responsive polymer–protein conjugates prepared by grafting-from via RAFT polymerization. J. Am. Chem. Soc. 2008, 130, 11288–11289.

73

Li, M.; Li, H. M.; De, P.; Sumerlin, B. S. Thermoresponsive block copolymer-protein conjugates prepared by grafting from via RAFT polymerization. Macromol. Rapid Commun. 2011, 32, 354–359.

74

Liu, J. Q.; Bulmus, V.; Herlambang, D. L.; Barner-Kowollik, C.; Stenzel, M. H.; Davis, T. P. In situ formation of protein–polymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew. Chem., Int. Ed. 2007, 46, 3099–3103.

75

Boyer, C.; Bulmus, V.; Liu, J. Q.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C. Well-defined protein–polymer conjugates via in situ RAFT polymerization. J. Am. Chem. Soc. 2007, 129, 7145–7154.

76

Reyhani, A.; McKenzie, T. G.; Ranji-Burachaloo, H.; Fu, Q.; Qiao, G. G. Fenton-RAFT polymerization: An "on-demand" chain-growth method. Chem. -Eur. J. 2017, 23, 7221–7226.

77

Gormley, A. J.; Yeow, J.; Ng, G.; Conway, ó.; Boyer, C.; Chapman, R. An oxygen-tolerant PET-RAFT polymerization for screening structure-activity relationships. Angew. Chem., Int. Ed. 2018, 57, 1557–1562.

78

Niu, J.; Lunn, D. J.; Pusuluri, A.; Yoo, J. I.; O'Malley, M. A.; Mitragotri, S.; Soh, H. T.; Hawker, C. J. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 2017, 9, 537–545.

79

Tucker, B. S.; Coughlin, M. L.; Figg, C. A.; Sumerlin, B. S. Grafting-from proteins using metal-free PET–RAFT polymerizations under mild visible-light irradiation. ACS Macro Lett. 2017, 6, 452–457.

80

Zhou, H. X.; Johnson, J. A. Photo-controlled growth of telechelic polymers and end-linked polymer gels. Angew. Chem., Int. Ed. 2013, 52, 2235–2238.

81

Chapman, R.; Gormley, A. J.; Stenzel, M. H.; Stevens, M. M. Combinatorial low-volume synthesis of well-defined polymers by enzyme degassing. Angew. Chem., Int. Ed. 2016, 128, 4576–4579.

82

Chapman, R.; Gormley, A. J.; Herpoldt, K. -L.; Stevens, M. M. Highly controlled open vessel RAFT polymerizations by enzyme degassing. Macromolecules 2014, 47, 8541–8547.

83

Tan, J. B.; Liu, D. D.; Bai, Y. H.; Huang, C. D.; Li, X. L.; He, J.; Xu, Q.; Zhang, L. Enzyme-assisted photoinitiated polymerization-induced self-assembly: An oxygen-tolerant method for preparing block copolymer nano-objects in open vessels and multiwell plates. Macromolecules 2017, 50, 5798–5806.

84

Halperin, A.; Kröger, M.; Winnik, F. M. Poly(Nisopropylacrylamide) phase diagrams: Fifty years of research. Angew. Chem., Int. Ed. 2015, 54, 15342–15367.

85

Chang, B. S.; Zhang, M. X.; Qing, G. Y.; Sun, T. L. Dynamic biointerfaces: From recognition to function. Small 2015, 11, 1097–1112.

86

Jochum, F. D.; Theato, P. Temperature-and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468–7483.

87

Zhuang, J. M.; Gordon, M. R.; Ventura, J.; Li, L. Y.; Thayumanavan, S. Multi-stimuli responsive macromolecules and their assemblies. Chem. Soc. Rev. 2013, 42, 7421–7435.

88

Shimoboji, T.; Larenas, E.; Fowler, T.; Kulkarni, S.; Hoffman, A. S.; Stayton, P. S. Photoresponsive polymer-enzyme switches. Proc. Natl. Acad. Sci. USA 2002, 99, 16592–16596.

89

Katayama, Y.; Sonoda, T.; Maeda, M. A polymer micelle responding to the protein kinase a signal. Macromolecules 2001, 34, 8569–8573.

90

Sonoda, T.; Nogami, T.; Oishi, J.; Murata, M.; Niidome, T.; Katayama, Y. A peptide sequence controls the physical properties of nanoparticles formed by peptide–polymer conjugates that respond to a protein kinase a signal. Bioconjugate Chem. 2005, 16, 1542–1546.

91

Beltran, S.; Baker, J. P.; Hooper, H. H.; Blanch, H. W.; Prausnitz, J. M. Swelling equilibria for weakly ionizable, temperature-sensitive hydrogels. Macromolecules 1991, 24, 549–551.

92

Aoyagi, T.; Ebara, M.; Sakai, K.; Sakurai, Y.; Okano, T. Novel bifunctional polymer with reactivity and temperature sensitivity. J. Biomater. Sci. -Polym. Ed. 2000, 11, 101–110.

93

Cho, Y.; Zhang, Y. J.; Christensen, T.; Sagle, L. B.; Chilkoti, A.; Cremer, P. S. Effects of hofmeister anions on the phase transition temperature of elastin-like polypeptides. J. Phys. Chem. B 2008, 112, 13765–13771.

94

Chung, J. E.; Yokoyama, M.; Yamato, M.; Aoyagi, T.; Sakurai, Y.; Okano, T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J. Control. Release 1999, 62, 115–127.

95

Wei, H.; Cheng, S. -X.; Zhang, X. -Z.; Zhuo, R. -X. Thermosensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog. Polym. Sci. 2009, 34, 893–910.

96

MacKay, J. A.; Chen, M. N.; McDaniel, J. R.; Liu, W. G.; Simnick, A. J.; Chilkoti, A. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat. Mater. 2009, 8, 993–999.

97

Rijcken, C. J. F.; Soga, O.; Hennink, W. E.; van Nostrum, C. F. Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery. J Control. Release 2007, 120, 131–148.

98

Wei, H.; Zhang, X. Z.; Cheng, C.; Cheng, S. -X.; Zhuo, R. -X. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Biomaterials 2007, 28, 99–107.

99

Moon, J. J.; Suh, H.; Bershteyn, A.; Stephan, M. T.; Liu, H. P.; Huang, B.; Sohail, M.; Luo, S.; Um, S. H.; Khant, H. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 2011, 10, 243–251.

100

Qi, Y. Z.; Simakova, A.; Ganson, N. J.; Li, X. H.; Luginbuhl, K. M.; Ozer, I.; Liu, W. G.; Hershfield, M. S.; Matyjaszewski, K.; Chilkoti, A. A brush-polymer/exendin-4 conjugate reduces blood glucose levels for up to five days and eliminates poly(ethylene glycol) antigenicity. Nat. Biomed. Eng. 2016, 1, 0002.

101

Luginbuhl, K. M.; Schaal, J. L.; Umstead, B.; Mastria, E. M.; Li, X. H.; Banskota, S.; Arnold, S.; Feinglos, M.; D'Alessio, D.; Chilkoti, A. One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nat. Biomed. Eng. 2017, 1, 0078.

102

Goodall, S.; Howard, C. B.; Jones, M. L.; Munro, T.; Jia, Z.; Monteiro, M. J.; Mahler, S. An EGFR targeting nanoparticle self assembled from a thermoresponsive polymer. J. Chem. Technol. Biot. 2015, 90, 1222–1229.

103

Lynn, G. M.; Laga, R.; Darrah, P. A.; Ishizuka, A. S.; Balaci, A. J.; Dulcey, A. E.; Pechar, M.; Pola, R.; Gerner, M. Y.; Yamamoto, A. et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 2015, 33, 1201–1210.

104

Langer, R.; Vacanti, J. P. Tissue engineering. Science 1993, 260, 920–926.

105

Ward, M. A.; Georgiou, T. K. Thermoresponsive polymers for biomedical applications. Polymers 2011, 3, 1215–1242.

106

Chen, Z. W.; Hu, Q. Y.; Gu, Z. Leveraging engineering of cells for drug delivery. Acc. Chem. Res. 2018, 51, 668–677.

107

Chen, Z. W.; Wang, J. Q.; Sun, W. J.; Archibong, E.; Kahkoska, A. R.; Zhang, X. D.; Lu, Y.; Ligler, F. S.; Buse, J. B.; Gu, Z. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 2018, 14, 86–93.

108

Reed, J. A.; Lucero, A. E.; Hu, S.; Ista, L. K.; Bore, M. T.; López, G. P.; Canavan, H. E. A low-cost, rapid deposition method for "smart" films: Applications in mammalian cell release. ACS Appl. Mater. Interfaces 2010, 2, 1048–1051.

109

Laloyaux, X.; Fautré, E.; Blin, T.; Purohit, V.; Leprince, J.; Jouenne, T.; Jonas, A. M.; Glinel, K. Temperatureresponsive polymer brushes switching from bactericidal to cell-repellent. Adv. Mater. 2010, 22, 5024–5028.

110

Yu, L.; Ding, J. D. Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 2008, 37, 1473–1481.

111

Lee, J.; Bae, Y. H.; Sohn, Y. S.; Jeong, B. Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol). Biomacromolecules 2006, 7, 1729–1734.

112

Chen, Y. S.; Yoon, S. J.; Frey, W.; Dockery, M.; Emelianov, S. Dynamic contrast-enhanced photoacoustic imaging using photothermal stimuli-responsive composite nanomodulators. Nat. Commun. 2017, 8, 15782.

113

Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705.

114

Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans. Anal. Chem. 2003, 75, 5926–5935.

115

Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 2009, 131, 2766–2767.

Publication history
Copyright
Acknowledgements

Publication history

Received: 10 May 2018
Revised: 30 May 2018
Accepted: 02 June 2018
Published: 21 June 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21374026 and 51573032), the National Science Fund for Distinguished Young Scholars (No. 51725302), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 11621505), CAS Key Research Program for Frontier Sciences (No. QYZDJ-SSW-SLH022), Key Project of Chinese Academy of Sciences in Cooperation with Foreign Enterprises (No. GJHZ1541), and CAS Interdisciplinary Innovation Team.

Return