Journal Home > Volume 11 , Issue 11

The determination of the intrinsic properties of nanomaterials is essential for their optimization as electrocatalysts, however it poses great challenges from the standpoint of analytical tools and methods. Herein, we report a novel methodology that allows for a binder-free investigation of electrocatalyst nanoparticles. The potential-assisted immobilization of a non-noble metal catalyst, i.e., nickel-iron layered double hydroxide (NiFe LDH) nanoparticles, was employed to directly attach small nanoparticle ensembles from a suspension to the surface of etched carbon nanoelectrodes. The dimensions of this type of electrodes allowed for the immobilization of the catalyst material below the picogram scale and resulted in a high resolution towards the faradaic current response. In addition the effect of the electrochemical aging on the intrinsic activity of the catalyst was investigated in alkaline media by means of continuous cyclic voltammetry. A change in the material properties could be observed, which was accompanied by a substantial decrease in its intrinsic activity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High resolution, binder-free investigation of the intrinsic activity of immobilized NiFe LDH nanoparticles on etched carbon nanoelectrodes

Show Author's information Patrick Wilde1Stefan Barwe1Corina Andronescu1Wolfgang Schuhmann1( )Edgar Ventosa1,2( )
Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum, Universitätsstr 150, D-44780Bochum, Germany
IMDEA EnergyAvda. Ramón de la Sagra3, 28935Móstoles, Spain

Abstract

The determination of the intrinsic properties of nanomaterials is essential for their optimization as electrocatalysts, however it poses great challenges from the standpoint of analytical tools and methods. Herein, we report a novel methodology that allows for a binder-free investigation of electrocatalyst nanoparticles. The potential-assisted immobilization of a non-noble metal catalyst, i.e., nickel-iron layered double hydroxide (NiFe LDH) nanoparticles, was employed to directly attach small nanoparticle ensembles from a suspension to the surface of etched carbon nanoelectrodes. The dimensions of this type of electrodes allowed for the immobilization of the catalyst material below the picogram scale and resulted in a high resolution towards the faradaic current response. In addition the effect of the electrochemical aging on the intrinsic activity of the catalyst was investigated in alkaline media by means of continuous cyclic voltammetry. A change in the material properties could be observed, which was accompanied by a substantial decrease in its intrinsic activity.

Keywords: oxygen evolution reaction, nickel-iron layered double hydroxide (NiFe LDH), immobilization, nanoelectrocatalysis, nanoelectrodes, nanoimpacts

References(39)

1

Kleijn, S. E. F.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R. Electrochemistry of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 3558–3586.

2

Ma, W.; Ma, R. Z.; Wu, J. H.; Sun, P. Z.; Liu, X. H.; Zhou, K. C.; Sasaki, T. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene. Nanoscale 2016, 8, 10425–10432.

3

Xia, D. C.; Zhou, L.; Qiao, S.; Zhang, Y. L.; Tang, D.; Liu, J.; Huang, H.; Liu, Y.; Kang, Z. H. Graphene/Ni–Fe layered double-hydroxide composite as highly active electrocatalyst for water oxidation. Mater. Res. Bull. 2016, 74, 441–446.

4

Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981–11989.

5

Cheng, S. A.; Liu, H.; Logan, B. E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 2006, 40, 364–369.

6

Jia, G.; Hu, Y. F.; Qian, Q. F.; Yao, Y. F.; Zhang, S. Y.; Li, Z. S.; Zou, Z. G. Formation of hierarchical structure composed of (Co/Ni)Mn-LDH nanosheets on MWCNT backbones for efficient electrocatalytic water oxidation. ACS Appl. Mater. Interfaces 2016, 8, 14527–14534.

7

Ji, J. Y.; Zhang, L. L.; Ji, H. X.; Li, Y.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 2013, 7, 6237–6243.

8

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

9

Bernsmeier, D.; Chuenchom, L.; Paul, B.; Rümmler, S.; Smarsly, B.; Kraehnert, R. Highly active binder-free catalytic coatings for heterogeneous catalysis and electrocatalysis: Pd on mesoporous carbon and its application in butadiene hydrogenation and hydrogen evolution. ACS Catal. 2016, 6, 8255–8263.

10

Kwon, S. J.; Fan, F. -R. F.; Bard, A. J. Observing iridium oxide (IrOx) single nanoparticle collisions at ultramicroelectrodes. J. Am. Chem. Soc. 2010, 132, 13165–13167.

11

Dasari, R.; Robinson, D. A.; Stevenson, K. J. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles. J. Am. Chem. Soc. 2013, 135, 570–573.

12

Kwon, S. J.; Zhou, H. J.; Fan, F. -R. F.; Vorobyev, V.; Zhang, B.; Bard, A. J. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes— Theory and experiments. Phys. Chem. Chem. Phys. 2011, 13, 5394–5402.

13

Kim, J.; Kim, B. -K.; Cho, S. K.; Bard, A. J. Tunneling ultramicroelectrode: Nanoelectrodes and nanoparticle collisions. J. Am. Chem. Soc. 2014, 136, 8173–8176.

14

Rees, N. V.; Zhou, Y. -G.; Compton, R. G. Making contact: Charge transfer during particle-electrode collisions. RSC Adv. 2012, 2, 379–384.

15

Tanner, E. E. L.; Tschulik, K.; Tahany, R.; Jurkschat, K.; Batchelor-McAuley, C.; Compton, R. G. Nanoparticle capping agent dynamics and electron transfer: Polymergated oxidation of silver nanoparticles. J. Phys. Chem. C. 2015, 119, 18808–18815.

16

Xiao, X. Y.; Bard, A. J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610–9612.

17

Kahk, J. M.; Rees, N. V.; Pillay, J.; Tshikhudo, R.; Vilakazi, S.; Compton, R. G. Electron transfer kinetics at single nanoparticles. Nano Today 2012, 7, 174–179.

18

Guo, Z. H.; Percival, S. J.; Zhang, B. Chemically resolved transient collision events of single electrocatalytic nanoparticles. J. Am. Chem. Soc. 2014, 136, 8879–8882.

19

Li, Y. X.; Cox, J. T.; Zhang, B. Electrochemical responses and electrocatalysis at single Au nanoparticles. J. Am. Chem. Soc. 2010, 132, 3047–3054.

20

Zhu, T.; Fu, X. Y.; Mu, T.; Wang, J.; Liu, Z. F. pH-dependent adsorption of gold nanoparticles on p-aminothiophenolmodified gold substrates. Langmuir 1999, 15, 5197–5199.

21

Lakbub, J.; Pouliwe, A.; Kamasah, A.; Yang, C.; Sun, P. Electrochemical behaviors of single gold nanoparticles. Electroanalysis 2011, 23, 2270–2274.

22

Rhieu, S. Y.; Reipa, V. Tuning the size of gold nanoparticles with repetitive oxidation-reduction cycles. Am. J. Nanomater. 2015, 3, 15–21.

23

Masitas, R. A.; Khachian, I. V.; Bill, B. L.; Zamborini, F. P. Effect of surface charge and electrode material on the sizedependent oxidation of surface-attached metal nanoparticles. Langmuir 2014, 30, 13075–13084.

24

Liu, G. Z.; Luais, E.; Gooding, J. J. The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry. Langmuir 2011, 27, 4176–4183.

25

Wang, Y.; Laborda, E.; Plowman, B. J.; Tschulik, K.; Ward, K. R.; Palgrave, R. G.; Damm, C.; Compton, R. G. The strong catalytic effect of Pb(Ⅱ) on the oxygen reduction reaction on 5 nm gold nanoparticles. Phys. Chem. Chem. Phys. 2014, 16, 3200–3208.

26

Wang, Y.; Laborda, E.; Tschulik, K.; Damm, C.; Molina, A.; Compton, R. G. Strong negative nanocatalysis: Oxygen reduction and hydrogen evolution at very small (2 nm) gold nanoparticles. Nanoscale 2014, 6, 11024–11030.

27

Barwe, S.; Masa, J.; Andronescu, C.; Mei, B.; Schuhmann, W.; Ventosa, E. Overcoming the instability of nanoparticlebased catalyst films in alkaline electrolyzers by using selfassembling and self-healing films. Angew. Chem., Int. Ed. 2017, 56, 8573–8577.

28

Yu, Y.; Gao, Y.; Hu, K. K.; Blanchard, P. -Y.; Noël, J. -M.; Nareshkumar, T.; Phani, K. L.; Friedman, G.; Gogotsi, Y.; Mirkin, M. V. Electrochemistry and electrocatalysis at single gold nanoparticles attached to carbon nanoelectrodes. ChemElectroChem 2015, 2, 58–63.

29

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

30

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

31

Yu, X. W.; Zhang, M.; Yuan, W. J.; Shi, G. Q. A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. J. Mater. Chem. A 2015, 3, 6921–6928.

32

Clausmeyer, J.; Wilde, P.; Lö ffler, T.; Ventosa, E.; Tschulik, K.; Schuhmann, W. Detection of individual nanoparticle impacts using etched carbon nanoelectrodes. Electrochem. Commun. 2016, 73, 67–70.

33

Actis, P.; Tokar, S.; Clausmeyer, J.; Babakinejad, B.; Mikhaleva, S.; Cornut, R.; Takahashi, Y.; López Córdoba, A.; Novak, P.; Shevchuck, A. I. et al. Electrochemical nanoprobes for single-cell analysis. ACS Nano 2014, 8, 875–884.

34

Schrlau, M. G.; Falls, E. M.; Ziober, B. L.; Bau, H. H. Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 2008, 19, 015101.

35

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

36

Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.

37

Xiao, X. Y.; Fan, F. -R. F.; Zhou, J. P.; Bard, A. J. Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 2008, 130, 16669–16677.

38

Kätelhö n, E.; Compton, R. G. Understanding nano-impacts: Impact times and near-wall hindered diffusion. Chem. Sci. 2014, 5, 4592–4598.

39

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

File
12274_2018_2119_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 March 2018
Revised: 24 May 2018
Accepted: 31 May 2018
Published: 22 June 2018
Issue date: November 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors acknowledge support by the BMBF in the framework of the project "NEMEZU" (No. 03SF0497B) and the Deutsche Forschungsgemeinschaft in the framework of the Cluster of Excellence "RESOLV" (No. EXC1069). P. W. is grateful to the Association of the Chemical Industry e.V. (VCI) for funding of the PhD fellowship.

Return