Journal Home > Volume 11 , Issue 11

Aggregation-induced emission luminogens (AIEgens) are fluorescent agents that are ideal for bioimaging and have been widely used for organelle targeting, cellular mapping, and tracing. Owing to their promising characteristics, AIEgen-based nanoparticles have recently been used for the stimulated emission depletion (STED) super-resolution imaging of fixed cells. In the present study, and for the first time, we used an AIEgen for dynamic STED nanoscopic imaging of a specific organelle in live cancer cells. TPA-T-CyP is a synthetic red & NIR-emitting luminogen with AIE features that can spontaneously and specifically aggregate on mitochondria without the need for encapsulation or surface modification. The STED efficiency of aggregated TPA-T-CyP can reach more than 80%, and super-resolution imaging of TPA-T-CyP-stained mitochondria in live HeLa cells is possible, with a lateral spatial resolution of 74 nm. We found that TPA-T-CyP enabled the dynamic visualization of mitochondria, and the motion, fusion, and fission of mitochondria were clearly observable on a super-resolution scale. AIEgen-based super-resolution organelle visualization has great potential for many basic biomedical studies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Aggregation-induced emission luminogen-assisted stimulated emission depletion nanoscopy for super-resolution mitochondrial visualization in live cells

Show Author's information Dongyu Li1,§Xiang Ni2,§Xiaoyan Zhang2Liwei Liu3Junle Qu3( )Dan Ding2,4( )Jun Qian1( )
State Key Laboratory of Modern Optical Instrumentation Centre for Optical and Electromagnetic Research Zhejiang Provincial Key Laboratory for Sensing Technologies Zhejiang UniversityHangzhou310058China
State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences Nankai UniversityTianjin300071China
Key Laboratory of Optoelectrical Devices and Systems Ministry of Education Shenzhen UniversityShenzhen518060China
Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy Cancer Institute Xuzhou Medical UniversityXuzhou221004China

§Dongyu Li and Xiang Ni contributed equally to this work.

Abstract

Aggregation-induced emission luminogens (AIEgens) are fluorescent agents that are ideal for bioimaging and have been widely used for organelle targeting, cellular mapping, and tracing. Owing to their promising characteristics, AIEgen-based nanoparticles have recently been used for the stimulated emission depletion (STED) super-resolution imaging of fixed cells. In the present study, and for the first time, we used an AIEgen for dynamic STED nanoscopic imaging of a specific organelle in live cancer cells. TPA-T-CyP is a synthetic red & NIR-emitting luminogen with AIE features that can spontaneously and specifically aggregate on mitochondria without the need for encapsulation or surface modification. The STED efficiency of aggregated TPA-T-CyP can reach more than 80%, and super-resolution imaging of TPA-T-CyP-stained mitochondria in live HeLa cells is possible, with a lateral spatial resolution of 74 nm. We found that TPA-T-CyP enabled the dynamic visualization of mitochondria, and the motion, fusion, and fission of mitochondria were clearly observable on a super-resolution scale. AIEgen-based super-resolution organelle visualization has great potential for many basic biomedical studies.

Keywords: aggregation-induced emission, stimulated emission depletion nanoscopy, mitochondria, dynamic visualization

References(46)

1

Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 2006, 312, 217–224.

2

Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 2010, 110, 2620–2640.

3

Domaille, D. W.; Que, E. L.; Chang, C. J. Synthetic fluorescent sensors for studying the cell biology of metals. Nat. Chem. Biol. 2008, 4, 168–175.

4

Hidalgo, M.; Urbano, M.; Ortiz, I.; Demyda-Peyras, S.; Murabito, M. R.; Gálvez, M. J.; Dorado, J. DNA integrity of canine spermatozoa during chill storage assessed by the sperm chromatin dispersion test using bright-field or fluorescence microscopy. Theriogenology 2015, 84, 399–406.

5

Tsachaki, M.; Birk, J.; Egert, A.; Odermatt, A. Corrigendum to "Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions"[Biochim. Biophys. Acta 1853/7 (2015) 1672–1682]. Biochim Biophys Acta 2015, 1853, 1918.

6

Kim, H. M.; Cho, B. R. Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 2015, 115, 5014–5055.

7

Kim, S.; Pudavar, H. E.; Bonoiu, A.; Prasad, P. N. Aggregation-enhanced fluorescence in organically modified silica nanoparticles: A novel approach toward high-signaloutput nanoprobes for two-photon fluorescence bioimaging. Adv. Mater. 2007, 19, 3791–3795.

8

Qian, J.; Wang, D.; Cai, F. H.; Zhan, Q. Q.; Wang, Y. L.; He, S. L. Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging. Biomaterials 2012, 33, 4851–4860.

9

Birks, J. B. Photophysics of Aromatic Molecules; WileyInterscience: London, New York, 1970.

10

Zheng, Q. D.; Ohulchanskyy, T. Y.; Sahoo, Y.; Prasad, P. N. Water-dispersible polymeric structure co-encapsulating a novel hexa-peri-hexabenzocoronene core containing chromophore with enhanced two-photon absorption and magnetic nanoparticles for magnetically guided two-photon cellular imaging. J. Phys. Chem. C 2007, 111, 16846–16851.

11

Wagh, A.; Qian, S. Y.; Law, B. Development of biocompatible polymeric nanoparticles for in vivo NIR and FRET imaging. Bioconjugate Chem. 2012, 23, 981–992.

12

Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B. et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5- pentaphenylsilole. Chem. Commun. 2001, 1740–1741.

13

Qian, J.; Tang, B. Z. AIE luminogens for bioimaging and theranostics: From organelles to animals. Chem 2017, 3, 56–91.

14

Leung, B. O.; Chou, K. C. Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc. 2011, 65, 967–980.

15

Gu, X. G.; Zhao, E. G.; Zhao, T.; Kang, M. M.; Gui, C.; Lam, J. W. Y.; Du, S. W.; Loy, M. M. T.; Tang, B. Z. A mitochondrion-specific photoactivatable fluorescence turn-on AIE-based bioprobe for localization super-resolution microscope. Adv. Mater. 2016, 28, 5064–5071.

16

Zhou, J.; Yu, G. C.; Huang, F. H. AIE opens new applications in super-resolution imaging. J. Mater. Chem. B 2016, 4, 7761–7765.

17

Li, D. Y.; Qin, W.; Xu, B.; Qian, J.; Tang, B. Z. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging. Adv. Mater. 2017, 29, 1703643.

18

Fang, X. F.; Chen, X. Z.; Li, R. Q.; Liu, Z. H; Chen, H. B.; Sun, Z. Z.; Ju, B.; Liu, Y. F.; Zhang, S. X. A.; Ding, D. et al. Multicolor photo-crosslinkable AIEgens toward compact nanodots for subcellular imaging and STED nanoscopy. Small 2017, 13, 1702128.

19

Yu, J. X.; Sun, X. H.; Cai, F. H.; Zhu, Z. F.; Qin, A. J.; Qian, J.; Tang, B. Z.; He, S. L. Low photobleaching and high emission depletion efficiency: The potential of AIE luminogen as fluorescent probe for STED microscopy. Opt. Lett. 2015, 40, 2313–2316.

20

Chang, Z. F.; Jing, L. M.; Chen, B.; Zhang, M. S.; Cai, X. L.; Liu, J. J.; Ye, Y. C.; Lou, X. D.; Zhao, Z. J.; Liu, B. et al. Rational design of asymmetric red fluorescent probes for live cell imaging with high AIE effects and large two-photon absorption cross sections using tunable terminal groups. Chem. Sci. 2016, 7, 4527–4536.

21

Zhao, E. G.; Hong, Y. N.; Chen, S. J.; Leung, C. W. T.; Chan, C. Y. K.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Highly fluorescent and photostable probe for long-term bacterial viability assay based on aggregation-induced emission. Adv. Healthc. Mater. 2014, 3, 88–96.

22

Ow, Y. L. P.; Green, D. R.; Hao, Z.; Mak, T. W. Cytochrome c: Functions beyond respiration. Nat. Rev. Mol. Cell Biol. 2008, 9, 532–542.

23

Rehman, J.; Zhang, H. J.; Toth, P. T.; Zhang, Y. M.; Marsboom, G.; Hong, Z. G.; Salgia, R.; Husain, A. N.; Wietholt, C.; Archer, S. L. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 2012, 26, 2175–2186.

24

Archer, S. L. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 2013, 369, 2236–2251.

25

Schrepfer, E.; Scorrano, L. Mitofusins, from mitochondria to metabolism. Mol. Cell 2016, 61, 683–694.

26

Sanchis-Gomar, F.; Lippi, G.; Lucia, A. 'Mitotherapy' for heart failure. Trends Mol. Med. 2016, 22, 267–269.

27

Marsboom, G.; Toth, P. T.; Ryan, J. J.; Hong, Z. G.; Wu, X. C.; Fang, Y. H.; Thenappan, T.; Piao, L.; Zhang, H. J.; Pogoriler, J. et al. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circul. Res. 2012, 110, 1484–1497.

28

Ryan, J. J.; Marsboom, G.; Fang, Y. H.; Toth, P. T.; Morrow, E.; Luo, N.; Piao, L.; Hong, Z. G.; Ericson, K.; Zhang, H. J. et al. PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2013, 187, 865–878.

29

Yoon, Y. S.; Galloway, C. A.; Jhun, B. S.; Yu, T. Z. Mitochondrial dynamics in diabetes. Antioxid. Redox Sign. 2011, 14, 439–457.

30

Zorzano, A.; Liesa, M.; Palacin, M. Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes. Int J. Biochem. Cell Biol. 2009, 41, 1846–1854.

31

Westermeier, F.; Navarro-Marquez, M.; López-Crisosto, C.; Bravo-Sagua, R.; Quiroga, C.; Bustamante, M.; Verdejo, H. E.; Zalaquett, R.; Ibacache, M.; Parra, V. et al. Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy. Biochim Biophys Acta 2015, 1853, 1113– 1118.

32

Shenouda, S. M.; Widlansky, M. E.; Chen, K.; Xu, G. Q.; Holbrook, M.; Tabit, C. E.; Hamburg, N. M.; Frame, A. A.; Caiano, T. L.; Kluge, M. A. et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 2011, 124, 444–453.

33

Bonda, D. J.; Smith, M. A.; Perry, G.; Lee, H. G.; Wang, X. L.; Zhu, X. W. The mitochondrial dynamics of Alzheimer's disease and Parkinson's disease offer important opportunities for therapeutic intervention. Curr. Pharm. Des. 2011, 17, 3374–3380.

34

Van Laar, V. S.; Berman, S. B. Mitochondrial dynamics in Parkinson's disease. Exp. Neurol. 2009, 218, 247–256.

35

Zhu, X. W.; Perry, G.; Smith, M. A.; Wang, X. L. Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J. Alzheimers Dis. 2013, 33, S253–S262.

36

Santos, D.; Cardoso, S. M. Mitochondrial dynamics and neuronal fate in Parkinson's disease. Mitochondrion 2012, 12, 428–437.

37

Mishra, P.; Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Bio. 2014, 15, 634–646.

38

Amato, P.; Tachibana, M.; Sparman, M.; Mitalipov, S. Threeparent in vitro fertilization: Gene replacement for the prevention of inherited mitochondrial diseases. Fertil. Steril. 2014, 101, 31–35.

39

Frey, T. G.; Mannella, C. A. The internal structure of mitochondria. Trends Biochem. Sci 2000, 25, 319–324.

40

Picard, M.; McManus, M. J.; Csordás, G.; Várnai, P.; Dorn, G. W.; Williams, D.; Hajnóczky, G.; Wallace, D. C. Transmitochondrial coordination of cristae at regulated membrane junctions. Nat. Commun. 2015, 6, 6269.

41

Zhao, N.; Chen, S. J.; Hong, Y. N.; Tang, B. Z. A red emitting mitochondria-targeted AIE probe as an indicator for membrane potential and mouse sperm activity. Chem. Commun. 2015, 51, 13599–13602.

42

Shim, S. H.; Xia, C. L.; Zhong, G. S.; Babcock, H. P.; Vaughan, J. C.; Huang, B.; Wang, X.; Xu, C.; Bi, G. Q.; Zhuang, X. W. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci. USA 2012, 109, 13978–13983.

43

Hanne, J.; Falk, H. J.; Görlitz, F.; Hoyer, P.; Engelhardt, J.; Sahl, S. J.; Hell, S. W. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 2015, 6, 7127.

44

Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229–233.

45

Zhan, Q. Q.; Liu, H. C.; Wang, B. J.; Wu, Q. S.; Pu, R.; Zhou, C.; Huang, B. R.; Peng, X. Y.; Ågren, H.; He, S. L. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 2017, 8, 1058.

46

Sesaki, H.; Jensen, R. E. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell Biol. 1999, 147, 699–706.

File
12274_2018_2118_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 April 2018
Revised: 29 May 2018
Accepted: 30 May 2018
Published: 25 June 2018
Issue date: November 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LR17F050001), the National Natural Science Foundation of China (Nos. 61735016 and 51622305), and the National Basic Research Program of China (Nos. 2013CB834704 and 2015CB856503), the PCSIRT (No. IRT13023), the Science & Technology Project of Tianjin of China (No. 15JCYBJC29800), the China Postdoctoral Science Foundation (No. 2016M601252), and the 111 project (B08011).

Return