AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Graphene oxide as an antimicrobial agent can extend the vase life of cut flowers

Yijia He1,2Lichao Qian3Xu Liu2,4Ruirui Hu1,2Meirong Huang1,2Yule Liu3Guoqiang Chen2,4Dusan Losic5Hongwei Zhu1,2( )
State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua UniversityBeijing100084China
Center for Nano and Micro Mechanics Tsinghua UniversityBeijing100084China
Center for Plant Biology and MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua UniversityBeijing100084China
Department of Biology School of Life Sciences Tsinghua UniversityBeijing100084China
School of Chemical Engineering Engineering North Building The University of Adelaide AdelaideSA5005Australia
Show Author Information

Graphical Abstract

Abstract

"PlantNanOmics" is an emerging topic in agricultural research that explores the potential effect of application of nanomaterials on plant growth. Graphene oxide (GO) has excellent properties due to its basal carbon plane and oxygen-containing functional groups. In the present work, the antimicrobial activity of GO was exploited to extend the vase life and improve the quality of cut roses (cv. Carola). The results revealed that the cut roses cultivated in low doses of GO (0.1 mg/L) had longer vase life, larger diameter, and better water relations. Microbial contaminations at the basal stem end is the most common reason for stem blockage that causes water stress and early wilting of cut flowers. GO was found to act as a germicide, effectively inhibiting the microbial growth at the cut stem end and improving water uptake and water balance of cut roses. Therefore, GO can serve as a promising preservative to increase the ornamental value of cut flowers.

Electronic Supplementary Material

Download File(s)
12274_2018_2115_MOESM1_ESM.pdf (1.6 MB)

References

1

Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F. F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A. V. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 2012, 7, 749–756.

2

Shi, W. C.; Fredrickson, G. H.; Kramer, E. J.; Ntaras, C.; Avgeropoulos, A.; Demassieux, Q.; Creton, C. Mechanics of an asymmetric hard–soft lamellar nanomaterial. ACS Nano 2016, 10, 2054–2062.

3

Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

4

Valentini, F.; Carbone, M.; Palleschi, G. Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors. Anal. Bioanal. Chem. 2013, 405, 451–465.

5

Raliya, R.; Tarafdar, J. C.; Gulecha, K.; Choudhary, K.; Ram, R.; Mal, P.; Saran, R. P. Scope of nanoscience and nanotechnology in agriculture. J. Appl. Biol. Biotechnol. 2013, 1, 41–44.

6

Gogos, A.; Knauer, K.; Bucheli, T. D. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J. Agric. Food Chem. 2012, 60, 9781–9792.

7

Parisi, C.; Vigani, M.; Rodríguez-Cerezo, E. Agricultural nanotechnologies: What are the current possibilities? Nano Today 2015, 10, 124–127.

8

Wang, P.; Lombi, E.; Zhao, F. J.; Kopittke, P. M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 2016, 21, 699–712.

9

Arora, S.; Sharma, P.; Kumar, S.; Nayan, R.; Khanna, P. K.; Zaidi, M. G. H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012, 66, 303–310.

10

Zuverza-Mena, N.; Martínez-Fernández, D.; Du, W. C.; Hernandez-Viezcas, J. A.; Bonilla-Bird, N.; López-Moreno, M. L.; Komárek, M.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—A review. Plant Physiol. Biochem. 2017, 110, 236–264.

11

Cañas, J. E.; Long, M.; Nations, S.; Vadan, R.; Dai, L.; Luo, M. X.; Ambikapathi, R.; Lee, E. H.; Olszyk, D. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem. 2008, 27, 1922–1931.

12

Khodakovskaya, M. V.; Kim, B. S.; Kim, J. N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C. E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small 2013, 9, 115–123.

13

Khodakovskaya, M. V.; de Silva, K.; Nedosekin, D. A.; Dervishi, E.; Biris, A. S.; Shashkov, E. V.; Galanzha, E. I.; Zharov, V. P. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 1028–1033.

14

Villagarcia, H.; Dervishi, E.; de Silva, K.; Biris, A. S.; Khodakovskaya, M. V. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 2012, 8, 2328–2334.

15

Zhang, M.; Gao, B.; Chen, J. J.; Li, Y. C.; Creamer, A. E.; Chen, H. Slow-release fertilizer encapsulated by graphene oxide films. Chem. Eng. J. 2014, 255, 107–113.

16

He, Y. J.; Hu, R. R.; Zhong, Y. J.; Zhao, X. L.; Chen, Q.; Zhu, H. W. Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res. 2018, 11, 1928–1937.

17

Chen, S. G.; Guo, Y. J.; Zhong, H. Q.; Chen, S. J.; Li, J. N.; Ge, Z. C.; Tang, J. N. Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles. Chem. Eng. J. 2014, 256, 238–246.

18

Chen, S. G.; Guo, Y. J.; Chen, S. J.; Yu, H. M.; Ge, Z. C.; Zhang, X.; Zhang, P. X.; Tang, J. N. Facile preparation and synergistic antibacterial effect of three-component Cu/TiO2/CS nanoparticles. J. Mater. Chem. 2012, 22, 9092–9099.

19

Chen, Y. X.; Li, J. N.; Li, Q. Q.; Shen, Y. Y.; Ge, Z. C.; Zhang, W. W.; Chen, S. G. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohyd. Polym. 2016, 143, 246–253.

20

Zhang, S. B.; Yang, X. H.; Tang, B.; Yuan, L. J.; Wang, K.; Liu, X. Y.; Zhu, X. L.; Li, J. N.; Ge, Z. C.; Chen, S. G. New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine. Chem. Eng. J. 2018, 336, 123–132.

21

Chen, S. G.; Yuan, L. J.; Li, Q. Q.; Li, J. N.; Zhu, X. L.; Jiang, Y. G.; Sha, O.; Yang, X. H.; Xin, J. H.; Wang, J. X. et al. Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating. Small 2016, 12, 3516–3521.

22

Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323.

23

Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601.

24

Gurunathan, S.; Han, J. W.; Abdal Daye, A.; Eppakayala, V.; Kim, J. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 2012, 7, 5901–5914.

25

Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980.

26

Saharan, V.; Sharma, G.; Yadav, M.; Choudhary, M. K.; Sharma, S. S.; Pal, A.; Raliya, R.; Biswas, P. Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol. 2015, 75, 346–353.

27

Lü, P. T.; He, S. G.; Li, H. M.; Cao, J. P.; Xu, H. L. Effects of nano-silver treatment on vase life of cut rose cv. Movie Star flowers. J. Sci. Food Agric. Environ. 2010, 8, 1118–1122.

28

Solgi, M.; Kafi, M.; Taghavi, T. S.; Naderi, R. Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. "Dune") flowers. Postharvest Biol. Technol. 2009, 53, 155–158.

29

Romero, A. M.; Vega, D.; Correa, O. S. Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Appl. Soil Ecol. 2014, 82, 38–43.

30

Da Silva, J. A. T. The cut flower: Postharvest considerations. J. Biol. Sci. 2003, 3, 406–442.

31

de Witte, Y.; Harkema, H.; van Doorn, W. G. Effect of antimicrobial compounds on cut Gerbera flowers: Poor relation between stem bending and numbers of bacteria in the vase water. Postharvest Biol. Technol. 2014, 91, 78–83.

32

Lü, P. T.; Cao, J. P.; He, S. G.; Liu, J. P.; Li, H. M.; Cheng, G. P.; Ding, Y. P.; Joyce, D. C. Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol. Technol. 2010, 57, 196–202.

33

Amingad, V.; Sreenivas, K. N.; Fakrudin, B.; Seetharamu, G. K.; Shankarappa, T. H.; Sangama; Venugopalan, R. Comparison of silver nanoparticles and other metal nanoparticles on postharvest attributes and bacterial load in cut roses var. Taj Mahal. Int. J. Pure Appl. Biosci. 2017, 5, 579–584.

34

Li, H. M.; Huang, X. M.; Li, J. B.; Liu, J. P.; Joyce, D.; He, S. G. Efficacy of nano-silver in alleviating bacteria-related blockage in cut rose cv. Movie Star stems. Postharvest Biol. Technol. 2012, 74, 36–41.

35

Zhao, D. Q.; Cheng, M. L.; Tang, W. H.; Liu, D.; Zhou, S. Y.; Meng, J. S.; Tao, J. Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall. ) flowers. Protoplasma, in press, DOI: 10.1007/s00709-018-1209-1.

36

Alekasir, K.; Rahim, N. H.; Azar, A. M. Effects of silver nanoparticles (SNPs) pulsing treatment and sucrose holding on flower and leaf senescence of cut rose. J. Ornamen. Plants 2017, 7, 103–113.

37

Leghari, A. J.; Laghari, U. A.; Laghari, A. H.; Bhutto, T. A. Cultivation of rose (Rosa indica L. ). J. Floricult. Landscap. 2016, 2, 1–4.

38

Bahremand, S.; Razmjoo, J.; Farahmand, H. Effects of nano-silver and sucrose applications on cut flower longevity and quality of tuberose (Polianthus tuberosa). Int. J. Hort. Sci. Technol. 2014, 1, 67–77.

39

Pompodakis, N. E.; Joyce, D. C. Abscisic acid analogue effects on the vase life and leaf crisping of cut Baccara roses. Aust. J. Exp. Agric. 2003, 43, 425–428.

40

Pouri, H. A.; Nejad, A. R.; Shahbazi, F. Effects of simulated in-transit vibration on the vase life and post-harvest characteristics of cut rose flowers. Hortic. Environ. Biot. 2017, 58, 38–47.

41

Nothnagl, M.; Kosiba, A.; Larsen, R. U. Predicting the effect of irradiance and temperature on the flower diameter of greenhouse grown Chrysanthemum. Sci. Hortic. 2004, 99, 319–329.

42

He, S. G.; Joyce, D. C.; Irving, D. E.; Faragher, J. D. Stem end blockage in cut Grevillea "Crimson Yul-lo" inflorescences. Postharvest Biol. Technol. 2006, 41, 78–84.

43

Sun, P. Z.; Liu, H.; Wang, K. L.; Zhong, M. L.; Wu, D. H.; Zhu, H. W. Ultrafast liquid water transport through graphenebased nanochannels measured by isotope labelling. Chem. Commun. 2015, 51, 3251–3254.

44

Daudi, A.; O'Brien, J. A. Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio. Protoc. 2012, 2, e263.

45

van Wees, S. Phenotypic analysis of Arabidopsis mutants: Trypan blue stain for fungi, oomycetes, and dead plant cells. CSH Protoc. 2008, 3, DOI: 10.1101/pdb.prot4982.

46

Dwivedi, S. K.; Arora, A.; Singh, V. P.; Sairam, R.; Bhattacharya, R. C. Effect of sodium nitroprusside on differential activity of antioxidants and expression of SAGs in relation to vase life of gladiolus cut flowers. Sci. Hortic. 2016, 210, 158–165.

47

Fanourakis, D.; Pieruschka, R.; Savvides, A.; Macnish, A. J.; Sarlikioti, V.; Woltering, E. J. Sources of vase life variation in cut roses: A review. Postharvest Biol. Technol. 2013, 78, 1–15.

48

In, B. C.; Ha, S. T. T.; Lee, Y. S.; Lim, J. H. Relationships between the longevity, water relations, ethylene sensitivity, and gene expression of cut roses. Postharvest Biol. Technol. 2017, 131, 74–83.

49

Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399.

50

Arora, A.; Sairam, R. K.; Srivastava, G. C. Oxidative stress and antioxidative system in plants. Curr. Sci. 2002, 82, 1227–1238.

51

Jiang, M.; Zhang, J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 2002, 53, 2401–2410.

52

Begum, P.; Ikhtiari, R.; Fugetsu, B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 2011, 49, 3907–3919.

53

Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 1997, 21, A. 3B. 1-A. 3B. 2.

54

Akhavan, O.; Ghaderi, E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 2012, 50, 1853–1860.

55

Salas, E. C.; Sun, Z. Z.; Lüttge, A.; Tour, J. M. Reduction of graphene oxide via bacterial respiration. ACS Nano 2010, 4, 4852–4856.

56

Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'Homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

Nano Research
Pages 6010-6022
Cite this article:
He Y, Qian L, Liu X, et al. Graphene oxide as an antimicrobial agent can extend the vase life of cut flowers. Nano Research, 2018, 11(11): 6010-6022. https://doi.org/10.1007/s12274-018-2115-8

763

Views

35

Crossref

N/A

Web of Science

35

Scopus

1

CSCD

Altmetrics

Received: 07 April 2018
Revised: 28 May 2018
Accepted: 30 May 2018
Published: 16 June 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return