Journal Home > Volume 11 , Issue 11

The tip-enhanced near-field technique has drawn great attention recently because it is a promising technique for nanoscale chemical analysis when combined with other spectroscopic methods. Furthermore, this integration can improve the spatial resolution of mass spectrometry. In this study, a nanosecond-laser (ns-laser)-induced tip-enhanced ablation and ionization source was coupled to an in-house-built laser ionization time-of-flight mass spectrometer. Sub-micrometer-sized craters (with diameters of 200–300 nm) were observed on titanium (Ti) film coated onto a gold (Au) substrate. The corresponding mass spectra were acquired, which verified that sub-micrometer-sized ablation (and subsequently ionization) could be achieved by the ns-laser-induced tip-enhanced electromagnetic field. In addition, formation of the crater was studied with an increased number of laser pulses. Furthermore, a mass spectrometry imaging (MSI) experiment was performed with potassium chloride (KCl) residue dropped onto nano-patterned gold pillars, achieving 80-nm lateral resolution.


menu
Abstract
Full text
Outline
About this article

Sub-micrometer-scale chemical analysis by nanosecond-laser-induced tip-enhanced ablation and ionization time-of-flight mass spectrometry

Show Author's information Xiaoping Li1Zhisen Liang1Shudi Zhang1Tongtong Wang1Wei Hang1,2( )
Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamen361005China

Abstract

The tip-enhanced near-field technique has drawn great attention recently because it is a promising technique for nanoscale chemical analysis when combined with other spectroscopic methods. Furthermore, this integration can improve the spatial resolution of mass spectrometry. In this study, a nanosecond-laser (ns-laser)-induced tip-enhanced ablation and ionization source was coupled to an in-house-built laser ionization time-of-flight mass spectrometer. Sub-micrometer-sized craters (with diameters of 200–300 nm) were observed on titanium (Ti) film coated onto a gold (Au) substrate. The corresponding mass spectra were acquired, which verified that sub-micrometer-sized ablation (and subsequently ionization) could be achieved by the ns-laser-induced tip-enhanced electromagnetic field. In addition, formation of the crater was studied with an increased number of laser pulses. Furthermore, a mass spectrometry imaging (MSI) experiment was performed with potassium chloride (KCl) residue dropped onto nano-patterned gold pillars, achieving 80-nm lateral resolution.

Keywords: tip-enhanced near-field technique, time-of-flight mass spectrometer, nanosecond laser, sub-micrometer-scale spatial resolution

References(33)

1

Hassenkam, T.; Andersson, M. P.; Dalby, K. N.; Mackenzie, D. M. A.; Rosing, M. T. Elements of eoarchean life trapped in mineral inclusions. Nature 2017, 548, 78-81.

2

Zenobi, R. Single-cell metabolomics: Analytical and biological perspectives. Science 2013, 342, 1243259.

3

Soltwisch, J.; Kettling, H.; Vens-Cappell, S.; Wiegelmann, M.; Müthing, J.; Dreisewerd, K. Mass spectrometry imaging with laser-induced postionization. Science 2015, 348, 211-215.

4

Russo, R. E.; Mao, X. L.; Gonzalez, J. J.; Zorba, V.; Yoo, J. Laser ablation in analytical chemistry. Anal. Chem. 2013, 85, 6162-6177.

5

Stadler, J.; Oswald, B.; Schmid, T.; Zenobi, R. Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy. J. Raman Spectrosc. 2013, 44, 227-233.

6

Xu, H. X.; Aizpurua, J.; Käll, M.; Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 2000, 62, 4318-4324.

7

Maier, S. A. Plasmonics: Fundamentals and Applications; Springer Science & Business Media: New York, 2007.

DOI
8

Kawata, S.; Inouye, Y.; Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 2009, 3, 388-394.

9

Hartschuh, A. Tip-enhanced near-field optical microscopy. Angew. Chem., Int. Ed. 2008, 47, 8178-8191.

10

Novotny, L.; Van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83-90.

11

Shi, X.; Coca-López, N.; Janik, J.; Hartschuh, A. Advances in tip-enhanced near-field Raman microscopy using nanoantennas. Chem. Rev. 2017, 117, 4945-4960.

12

Feng, L.; Ma, R. P.; Wang, Y. D.; Xu, D. R.; Xiao, D. Y.; Liu, L. X.; Lu, N. Silver-coated elevated bowtie nanoantenna arrays: Improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering. Nano Res. 2015, 8, 3715-3724.

13

Kazemi-Zanjani, N.; Chen, H. H.; Goldberg, H. A.; Hunter, G. K.; Grohe, B.; Lagugné-Labarthet, F. Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2012, 134, 17076-17082.

14

Pashaee, F.; Tabatabaei, M.; Caetano, F. A.; Ferguson, S. S. G.; Lagugné-Labarthet, F. Tip-enhanced Raman spectroscopy: Plasmid-free vs. plasmid-embedded DNA. Analyst 2016, 141, 3251-3258.

15

Xiao, L. F.; Wang, H.; Schultz, Z. D. Selective detection of RGD-integrin binding in cancer cells using tip enhanced Raman scattering microscopy. Anal. Chem. 2016, 88, 6547-6553.

16

Chiang, N.; Jiang, N.; Chulhai, D. V.; Pozzi, E. A.; Hersam, M. C.; Jensen, L.; Seideman, T.; Van Duyne, R. P. Molecular-resolution interrogation of a porphyrin monolayer by ultrahigh vacuum tip-enhanced Raman and fluorescence spectroscopy. Nano Lett. 2015, 15, 4114-4120.

17

Lu, F.; Jin, M. Z.; Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photonics 2014, 8, 307-312.

18

Zhong, J. H.; Jin, X.; Meng, L. Y.; Wang, X.; Su, H. S.; Yang, Z. L.; Williams, C. T.; Ren, B. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 2017, 12, 132-136.

19

Wang, Y. D.; Zeng, Z. F.; Li, J.; Chi, L. F.; Guo, X. H.; Lu, N. Biomimetic antireflective silicon nanocones array for small molecules analysis. J. Am. Soc. Mass Spectrom. 2013, 24, 66-73.

20

Kompauer, M.; Heiles, S.; Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 2017, 14, 90-96.

21

Nilsson, P. T.; Eriksson, A. C.; Ludvigsson, L.; Messing, M. E.; Nordin, E. Z.; Gudmundsson, A.; Meuller, B. O.; Deppert, K.; Fortner, E. C.; Onasch, T. B. et al. In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry. Nano Res. 2015, 8, 3780-3795.

22

Ostrowski, S. G.; Van Bell, C. T.; Winograd, N.; Ewing, A. G. Mass spectrometric imaging of highly curved membranes during tetrahymena mating. Science 2004, 305, 71-73.

23

Breuer, L.; Popczun, N. J.; Wucher, A.; Winograd, N. Reducing the matrix effect in molecular secondary ion mass spectrometry by laser post-ionization. J. Phys. Chem. C 2017, 121, 19705-19715.

24

Cerezo, A.; Clifton, P. H.; Galtrey, M. J.; Humphreys, C. J.; Kelly, T. F.; Larson, D. J.; Lozano-Perez, S.; Marquis, E. A.; Oliver, R. A.; Sha, G. et al. Atom probe tomography today. Mater. Today 2007, 10, 36-42.

25

Liang, Z. S.; Zhang, S. D.; Li, X. P.; Wang, T. T.; Huang, Y. P.; Hang, W.; Yang, Z. L.; Li, J. F.; Tian, Z. Q. Tip-enhanced ablation and ionization mass spectrometry for nanoscale chemical analysis. Sci. Adv. 2017, 3, eaaq1059.

26

Hang, W. Laser ionization time-of-flight mass spectrometer with an ion guide collision cell for elemental analysis of solids. J. Anal. At. Spectrom. 2005, 20, 301-307.

27

He, J.; Huang, R. F.; Yu, Q.; Lin, Y. M.; Hang, W.; Huang, B. L. A small high-irradiance laser ionization time-of-flight mass spectrometer. J. Mass Spectrom. 2009, 44, 780-785.

28

Iwami, M.; Uehara, Y.; Ushioda, S. Preparation of silver tips for scanning tunneling microscopy imaging. Rev. Sci. Instrum. 1998, 69, 4010-4011.

29

Clavilier, J.; Faure, R.; Guinet, G.; Durand, R. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J. Electroanal. Chem. Interf. Electrochem. 1979, 107, 205-209.

30

Petzoldt, S.; Reif, J.; Matthias, E. Laser plasma threshold of metals. Appl. Surf. Sci. 1996, 96-98, 199-204.

31

Liu, C.; Mao, X. L.; Mao, S. S.; Zeng, X.; Greif, R.; Russo, R. E. Nanosecond and ferntosecond laser ablation of brass: Particulate and icpms measurements. Anal. Chem. 2004, 76, 379-383.

32

Cleveland, D.; Michel, R. G. A review of near-field laser ablation for high-resolution nanoscale surface analysis. Appl. Spetrosc. Rev. 2008, 43, 93-110.

33

Sarid, D.; Challener, W. A. Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications; Cambridge University Press: Cambridge, 2010.

DOI
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 January 2018
Revised: 29 May 2018
Accepted: 30 May 2018
Published: 20 June 2018
Issue date: November 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors gratefully thank the National Natural Science Foundation of China (No. 21427813) for financial support of this work. This work is also supported by NFFTBS (No. J1310024).

Return