Journal Home > Volume 11 , Issue 11

Recent theoretical studies revealed that two-dimensional (2D) antimonene has attractive characteristics, such as superior photothermal conductivity, absorption over a wide range, high mobility, and good spintronic properties. Herein, we report a reliable liquid phase exfoliation (LPE) route for the preparation of high-quality high-stability atomically thin (AT) antimonene via high ultrasonic power. The AT antimonene delivers a high specific capacity of up to 860 mA·h·g–1, with high rate capability and good cycling stability as an anode of a sodium ion battery (SIB). The good conductivity and 2D structure endow AT antimonene with more active sites for sodium storage, a facilitated pathway for electron transfer and mass transport, and the capability to reduce the volume expansion during the discharge–charge process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power

Show Author's information Wanzhen Lin1Yaping Lian1Guang Zeng2( )Yanyan Chen1Zhenhai Wen2( )Huanghao Yang1( )
MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116China
CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Provincial Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China

Abstract

Recent theoretical studies revealed that two-dimensional (2D) antimonene has attractive characteristics, such as superior photothermal conductivity, absorption over a wide range, high mobility, and good spintronic properties. Herein, we report a reliable liquid phase exfoliation (LPE) route for the preparation of high-quality high-stability atomically thin (AT) antimonene via high ultrasonic power. The AT antimonene delivers a high specific capacity of up to 860 mA·h·g–1, with high rate capability and good cycling stability as an anode of a sodium ion battery (SIB). The good conductivity and 2D structure endow AT antimonene with more active sites for sodium storage, a facilitated pathway for electron transfer and mass transport, and the capability to reduce the volume expansion during the discharge–charge process.

Keywords: antimonene, atomically thin, liquid phase exfoliation, atomic force microscopy sodium-ion batteries

References(59)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.

3

Zhang, X. D.; Xie, Y. Recent advances in free-standing two-dimensional crystals with atomic thickness: Design, assembly and transfer strategies. Chem. Soc. Rev. 2013, 42, 8187-8199.

4

Mannix, A. J.; Kiraly, B.; Hersam, M. C.; Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 0014.

5

Huang, Q. M.; Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. In-situ TEM investigation of MoS2 upon alkali metal intercalation. Sci. China Chem. 2018, 61, 222-227.

6

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

7

Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627-632.

8

Kobayashi, Y.; Kumakura, K.; Akasaka, T.; Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 2012, 484, 223-227.

9

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.

10

Zhang, X.; Xie, H. M.; Liu, Z. D.; Tan, C. L.; Luo, Z. M.; Li, H.; Lin, J. D.; Sun, L. Q.; Chen, W.; Xu, Z. C. et al. Black phosphorus quantum dots. Angew. Chem., Int. Ed. 2015, 54, 3653-3657.

11

Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 54, 3112-3115.

12

Zhang, S. L.; Xie, M. Q.; Li, F. Y.; Yan, Z.; Li, Y. F.; Kan, E. J.; Liu, W.; Chen, Z. F.; Zeng, H. B. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew. Chem., Int. Ed. 2016, 55, 1666-1669.

13

Kecik, D.; Durgun, E.; Ciraci, S. Optical properties of single-layer and bilayer arsenene phases. Phys. Rev. B 2016, 94, 205410.

14

Pumera, M.; Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299.

15

Zhang, S. L.; Guo, S. Y.; Chen, Z. F.; Wang, Y. L.; Gao, H. J.; Gomez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. B. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982-1021.

16

Zhang, S. L.; Zhou, W. H.; Ma, Y. D.; Ji, J. P.; Cai, B.; Yang, S. A.; Zhu, Z.; Chen, Z. F.; Zeng, H. B. Antimonene oxides: Emerging tunable direct bandgap semiconductor and novel topological insulator. Nano Lett. 2017, 17, 3434-3440.

17

Xie, M. Q.; Zhang, S. L.; Cai, B.; Gu, Y.; Liu, X. H.; Kan, E. J.; Zeng, H. B. Van der Waals bilayer antimonene: A promising thermophotovoltaic cell material with 31% energy conversion efficiency. Nano Energy 2017, 38, 561-568.

18

Ares, P.; Palacios, J. J.; Abellán, G.; Gómez-Herrero, J.; Zamora, F. Recent progress on antimonene: A new bidimensional material. Adv. Mater. 2018, 30, 1703771.

19

Ares, P.; Zamora, F.; Gomez-Herrero, J. Optical identification of few-layer antimonene crystals. ACS Photonics 2017, 4, 600-605.

20

Singh, D.; Gupta, S. K.; Sonvane, Y.; Lukačević, I. Antimonene: A monolayer material for ultraviolet optical nanodevices. J. Mater. Chem. C 2016, 4, 6386-6390.

21

Shu, H. B.; Li, Y. H.; Niu, X. H.; Guo, J. Y. Electronic structures and optical properties of arsenene and antimonene under strain and an electric field. J. Mater. Chem. C 2018, 6, 83-90.

22

Chen, K. X.; Lyu, S. S.; Wang, X. M.; Fu, Y. X.; Heng, Y.; Mo, D. C. Excellent thermoelectric performance predicted in two-dimensional buckled antimonene: A first-principles study. J. Phys. Chem. C 2017, 121, 13035-13042.

23

Cheung, C. H.; Fuh, H. R.; Hsu, M. C.; Lin, Y. C.; Chang, C. R. Spin orbit coupling gap and indirect gap in strain-tuned topological insulator-antimonene. Nanoscale Res. Lett. 2016, 11, 459.

24

Wang, Y. L.; Ding, Y. Electronic structure and carrier mobilities of arsenene and antimonene nanoribbons: A first-principle study. Nanoscale Res. Lett. 2015, 10, 254.

25

Wang, Y. Y.; Huang, P.; Ye, M.; Quhe, R.; Pan, Y. Y.; Zhang, H.; Zhong, H. X.; Shi, J. J.; Lu, J. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem. Mater. 2017, 29, 2191-2201.

26

Ares, P.; Aguilar-Galindo, F.; Rodríguez-San-Miguel, D.; Aldave, D. A.; Díaz-Tendero, S.; Alcamí, M.; Martín, F.; Gómez-Herrero, J.; Zamora, F. Mechanical isolation of highly stable antimonene under ambient conditions. Adv. Mater. 2016, 28, 6332-6336.

27

Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352.

28

Lei, T.; Liu, C.; Zhao, J. L.; Li, J. M.; Li, Y. P.; Wang, J. O.; Wu, R.; Qian, H. J.; Wang, H. Q.; Ibrahim, K. Electronic structure of antimonene grown on Sb2Te3 (111) and Bi2Te3 substrates. J. Appl. Phys. 2016, 119, 015302.

29

Fortin-Deschênes, M.; Waller, O.; Menteş, T. O.; Locatelli, A.; Mukherjee, S.; Genuzio, F.; Levesque, P. L.; Hébert, A.; Martel, R.; Moutanabbir, O. Synthesis of antimonene on germanium. Nano Lett. 2017, 17, 4970-4975.

30

Gibaja, C.; Rodriguez-San-Miguel, D.; Ares, P.; Gómez-Herrero, J.; Varela, M.; Gillen, R.; Maultzsch, J.; Hauke, F.; Hirsch, A.; Abellán, G. et al. Few-layer antimonene by liquid-phase exfoliation. Angew. Chem., Int. Ed. 2016, 55, 14345-14349.

31

Gu, J. N.; Du, Z. G.; Zhang, C.; Ma, J. G.; Li, B.; Yang, S. B. Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv. Energy Mater. 2017, 7, 1700447.

32

Tao, W.; Ji, X. Y.; Xu, X. D.; Islam, M. A.; Li, Z. J.; Chen, S.; Saw, P. E.; Zhang, H.; Bharwani, Z.; Guo, Z. L. et al. Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem., Int. Ed. 2017, 56, 11896-11900.

33

Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.

34

Coleman, J. N. Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 2013, 46, 14-22.

35

Tu, F. Z.; Xu, X.; Wang, P. Z.; Si, L.; Zhou, X. S.; Bao, J. C. A few-layer SnS2/reduced graphene oxide sandwich hybrid for efficient sodium storage. J. Phys. Chem. C. 2017, 121, 3261-3269.

36

Zhou, X. S.; Wu, T. B.; Ding, K. L.; Hu, B. J.; Hou, M. Q.; Han, B. X. The dispersion of carbon nanotubes in water with the aid of very small amounts of ionic liquid. Chem. Commun. 2009, 1897-1899.

37

Tian, W. F.; Zhang, S. L.; Huo, C. X.; Zhu, D. M.; Li, Q. W.; Wang, L.; Ren, X. C.; Xie, L.; Guo, S. Y.; Chu, P. K. et al. Few-layer antimonene: Anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries. ACS Nano 2018, 12, 1887-1893.

38

Abellán, G.; Ares, P.; Wild, S.; Nuin, E.; Neiss, C.; Rodriguez-San Miguel, D.; Segovia, P.; Gibaja, C.; Michel, E. G.; Görling, A. et al. Noncovalent functionalization and charge transfer in antimonene. Angew. Chem., Int. Ed. 2017, 56, 14389-14394.

39

Huang, Z. D.; Hou, H. S.; Zhang, Y.; Wang, C.; Qiu, X. Q.; Ji, X. B. Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater. 2017, 29, 1702372.

40

Sahu, T. S.; Li, Q. Q.; Wu, J. S.; Dravid, V. P.; Mitra, S. Exfoliated MoS2 nanosheets confined in 3-D hierarchical carbon nanotube@graphene architecture with superior sodium-ion storage. J. Mater. Chem. A 2017, 5, 355-363.

41

Yang, J. Q.; Zhou, X. L.; Wu, D. H.; Zhao, X. D.; Zhou, Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 2017, 29, 1604108.

42

Hou, H. S.; Shao, L. D.; Zhang, Y.; Zou, G. Q.; Chen, J.; Ji, X. B. Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries. Adv. Sci. 2017, 4, 1600243.

43

Hu, L. Y.; Zhu, X. S.; Du, Y. C.; Li, Y. F.; Zhou, X. S.; Bao, J. C. A chemically coupled antimony/multilayer graphene hybrid as a high-performance anode for sodium-ion batteries. Chem. Mater. 2015, 27, 8138-8145.

44

Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805-20811.

45

Kong, B.; Zu, L. H.; Peng, C. X.; Zhang, Y.; Zhang, W.; Tang, J.; Selomulya, C.; Zhang, L. D.; Chen, H. X.; Wang, Y. et al. Direct superassemblies of freestanding metal-carbon frameworks featuring reversible crystalline-phase transformation for electrochemical sodium storage. J. Am. Chem. Soc. 2016, 138, 16533-16541.

46

Li, N.; Liao, S.; Sun, Y.; Song, H. W.; Wang, C. X. Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability. J. Mater. Chem. A 2015, 3, 5820-5828.

47

Hu, M. J.; Jiang, Y. Z.; Sun, W. P.; Wang, H. T.; Jin, C. H.; Yan, M. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 19449-19455.

48

Hou, H. S.; Jing, M. J.; Yang, Y. C.; Zhu, Y. R.; Fang, L. B.; Song, W. X.; Pan, C. C.; Yang, X. M.; Ji, X. B. Sodium/ lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. ACS Appl. Mater. Interfaces 2014, 6, 16189-16196.

49

Gao, H. C.; Zhou, W. D.; Jang, J. H.; Goodenough, J. B. Cross-linked chitosan as a polymer network binder for an antimony anode in sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502130.

50

Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1229-1236.

51

Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.

52

Zeng, G.; Hu, X.; Zhou, B. L.; Chen, J. X.; Cao, C. S.; Wen, Z. H. Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries. Nanoscale 2017, 9, 14722-14729.

53

Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127-3171.

54

Liu, X.; Du, Y. C.; Xu, X.; Zhou, X. S.; Dai, Z. H.; Bao, J. C. Enhancing the anode performance of antimony through nitrogen-doped carbon and carbon nanotubes. J. Phys. Chem. C 2016, 120, 3214-3220.

55

Wang, N. N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126-4133.

56

Cheng, Y.; Yi, Z.; Wang, C. L.; Wang, L. D.; Wu, Y. M.; Wang, L. M. Nanostructured carbon/antimony composites as anode materials for lithium-ion batteries with long life. Chem. -Asian J. 2016, 11, 2173-2180.

57

Wu, X. L.; Guo, Y. G.; Su, J.; Xiong, J. W.; Zhang, Y. L.; Wan, L. J. Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 1155-1160.

58

Elizabeth, I.; Singh, B. P.; Trikha, S.; Gopukumar, S. Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries. J. Power Sources 2016, 329, 412-421.

59

Liu, Y. H.; Yu, X. -Y.; Fang, Y. J.; Zhu, X. S.; Bao, J. C.; Zhou, X. S.; Lou, X. W. Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2018, 2, 725-735.

File
12274_2018_2110_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 March 2018
Revised: 23 May 2018
Accepted: 24 May 2018
Published: 13 June 2018
Issue date: November 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 21635002, U1505221, and 21705023), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT15R11), and the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (No. 2014B02).

Return