Journal Home > Volume 11 , Issue 11

Recently, owing to the excellent electrical and optical properties, n-type In2O3 nanowires (NWs) have attracted tremendous attention for application in memory devices, solar cells, and ultra-violet photodetectors. However, the relatively low electron mobility of In2O3 NWs grown by chemical vapor deposition (CVD) has limited their further utilization. In this study, utilizing in-situ Ga alloying, highly crystalline, uniform, and thin In2xGa2-2xO3 NWs with diameters down to 30 nm were successfully prepared via ambient-pressure CVD. Introducing an optimal amount of Ga (10 at.%) into the In2O3 lattice was found to effectively enhance the crystal quality and reduce the number of oxygen vacancies in the NWs. A further increase in the Ga concentration adversely induced the formation of a resistive β-Ga2O3 phase, thereby deteriorating the electrical properties of the NWs. Importantly, when configured into global back-gated NW field-effect transistors, the optimized In1.8Ga0.2O3 NWs exhibit significantly enhanced electron mobility reaching up to 750 cm2·V–1·s–1 as compared with that of the pure In2O3 NW, which can be attributed to the reduction in the number of oxygen vacancies and ionized impurity scattering centers. Highly ordered NW parallel arrayed devices were also fabricated to demonstrate the versatility and potency of these NWs for next-generation, large-scale, and high-performance nanoelectronics, sensors, etc.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Towards high-mobility In2xGa2–2xO3 nanowire field-effect transistors

Show Author's information Ziyao Zhou1,3Changyong Lan1,2SenPo Yip1,3,4Renjie Wei1,3Dapan Li1,3Lei Shu1,3,4Johnny C. Ho1,3,4( )
Department of Materials Science and EngineeringCity University of Hong KongKowloonHong Kong999077China
School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
Shenzhen Research InstituteCity University of Hong KongShenzhen518057China
State Key Laboratory of Millimeter WavesCity University of Hong KongKowloonHong Kong999077China

Abstract

Recently, owing to the excellent electrical and optical properties, n-type In2O3 nanowires (NWs) have attracted tremendous attention for application in memory devices, solar cells, and ultra-violet photodetectors. However, the relatively low electron mobility of In2O3 NWs grown by chemical vapor deposition (CVD) has limited their further utilization. In this study, utilizing in-situ Ga alloying, highly crystalline, uniform, and thin In2xGa2-2xO3 NWs with diameters down to 30 nm were successfully prepared via ambient-pressure CVD. Introducing an optimal amount of Ga (10 at.%) into the In2O3 lattice was found to effectively enhance the crystal quality and reduce the number of oxygen vacancies in the NWs. A further increase in the Ga concentration adversely induced the formation of a resistive β-Ga2O3 phase, thereby deteriorating the electrical properties of the NWs. Importantly, when configured into global back-gated NW field-effect transistors, the optimized In1.8Ga0.2O3 NWs exhibit significantly enhanced electron mobility reaching up to 750 cm2·V–1·s–1 as compared with that of the pure In2O3 NW, which can be attributed to the reduction in the number of oxygen vacancies and ionized impurity scattering centers. Highly ordered NW parallel arrayed devices were also fabricated to demonstrate the versatility and potency of these NWs for next-generation, large-scale, and high-performance nanoelectronics, sensors, etc.

Keywords: oxygen vacancy, chemical vapor deposition, mobility, nanowire, In2O3 , In2xGa2-2xO3

References(46)

1

Liu, Q. Z.; Liu, Y. H.; Wu, F. Q.; Cao, X.; Li, Z.; Alharbi, M.; Abbas, A. N.; Amer, M. R.; Zhou, C. W. Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano 2018, 12, 1170-1178.

2

Meng, M.; Wu, X. L.; Ji, X. L.; Gan, Z. X.; Liu, L. Z.; Shen, J. C.; Chu, P. K. Ultrahigh quantum efficiency photodetector and ultrafast reversible surface wettability transition of square In2O3 nanowires. Nano Res. 2017, 10, 2772-2781.

3

Macco, B.; Knoops, H. C. M.; Kessels, W. M. M. Electron scattering and doping mechanisms in solid-phase-crystallized In2O3: H prepared by atomic layer deposition. ACS Appl. Mater. Interfaces 2015, 7, 16723-16729.

4

Park, S.; Kim, S.; Sun, G. -J.; Lee, C. Synthesis, structure, and ethanol gas sensing properties of In2O3 nanorods decorated with Bi2O3 nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 8138-8146.

5

Liu, A.; Liu, G. X.; Zhu, H. H.; Xu, F.; Fortunato, E.; Martins, R.; Shan, F. K. Fully solution-processed low-voltage aqueous In2O3 thin-film transistors using an ultrathin ZrOx dielectric. ACS Appl. Mater. Interfaces 2014, 6, 17364-17369.

6

Khim, D.; Lin, Y. -H.; Nam, S.; Faber, H.; Tetzner, K.; Li, R. P.; Zhang, Q.; Li, J.; Zhang, X. X.; Anthopoulos, T. D. Modulation-doped In2O3/ZnO heterojunction transistors processed from solution. Adv. Mater. 2017, 29, 1605837.

7

Leppäniemi, J.; Huttunen, O. -H.; Majumdar, H.; Alastalo, A. Flexography-printed In2O3 semiconductor layers for high-mobility thin-film transistors on flexible plastic substrate. Adv. Mater. 2015, 27, 7168-7175.

8

Kim, J.; Rim, Y. S.; Chen, H. J.; Cao, H. H.; Nakatsuka, N.; Hinton, H. L.; Zhao, C. Z.; Andrews, A. M.; Yang, Y.; Weiss, P. S. Fabrication of high-performance ultrathin In2O3 film field-effect transistors and biosensors using chemical lift-off lithography. ACS Nano 2015, 9, 4572-4582.

9

Hou, J. G.; Cao, S. Y.; Sun, Y. Q.; Wu, Y. Z.; Liang, F.; Lin, Z. S.; Sun, L. C. Atomically thin mesoporous In2O3-x/In2S3 lateral heterostructures enabling robust broadband-light photo-electrochemical water splitting. Adv. Energy Mater. 2018, 8, 1701114.

10

Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P. D.; Zhou, C. W.; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378-384.

11

Li, C.; Zhang, D.; Han, S.; Liu, X.; Tang, T.; Zhou, C. Diameter‐controlled growth of single‐crystalline In2O3 nanowires and their electronic properties. Adv. Mater. 2003, 15, 143-146.

12

Zou, X. M.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z.; Xiong, Q. H. et al. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. ACS Nano 2013, 7, 804-810.

13

Shen, G. Z.; Xu, J.; Wang, X. F.; Huang, H. T.; Chen, D. Growth of directly transferable In2O3 nanowire mats for transparent thin‐film transistor applications. Adv. Mater. 2011, 23, 771-775.

14

Lei, B.; Li, C.; Zhang, D.; Tang, T.; Zhou, C. Tuning electronic properties of In2O3 nanowires by doping control. Appl. Phys. A 2004, 79, 439-442.

15

Peng, X. S.; Wang, Y. W.; Zhang, J.; Wang, X. F.; Zhao, L. X.; Meng, G. W.; Zhang, L. D. Large-scale synthesis of In2O3 nanowires. Appl. Phys. A 2002, 74, 437-439.

16

Lao, J.; Huang, J.; Wang, D.; Ren, Z. Self‐assembled In2O3 nanocrystal chains and nanowire networks. Adv. Mater. 2004, 16, 65-69.

17

Yan, Y. G.; Zhang, Y.; Zeng, H. B.; Zhang, J. X.; Cao, X. L.; Zhang, L. D. Tunable synthesis of In2O3 nanowires, nanoarrows and nanorods. Nanotechnology 2007, 18, 175601.

18

Kam, K. C.; Deepak, F. L.; Cheetham, A. K.; Rao, C. N. R. In2O3 nanowires, nanobouquets and nanotrees. Chem. Phys. Lett. 2004, 397, 329-334.

19

Han, N.; Yang, Z. X.; Wang, F. Y.; Yip, S.; Dong, G. F.; Liang, X. G.; Hung, T.; Chen, Y. F.; Ho, J. C. Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen. ACS Appl. Mater. Interfaces 2015, 7, 5591-5597.

20

Zhang, D. H.; Ma, H. L. Scattering mechanisms of charge carriers in transparent conducting oxide films. Appl. Phys. A 1996, 62, 487-492.

21

Yang, Z. -X.; Yip, S.; Li, D. P.; Han, N.; Dong, G. F.; Liang, X. G.; Shu, L.; Hung, T. F.; Mo, X. L.; Ho, J. C. Approaching the hole mobility limit of GaSb nanowires. ACS Nano 2015, 9, 9268-9275.

22

Shen, Y. D.; Chen, R. J.; Yu, X. C.; Wang, Q. J.; Jungjohann, K. L.; Dayeh, S. A.; Wu, T. Gibbs-Thomson effect in planar nanowires: Orientation and doping modulated growth. Nano Lett. 2016, 16, 4158-4165.

23

Li, W. Q.; Liao, L.; Xiao, X. H.; Zhao, X. Y.; Dai, Z. G.; Guo, S. S.; Wu, W.; Shi, Y.; Xu, J. X.; Ren, F. et al. Modulating the threshold voltage of oxide nanowire field-effect transistors by a Ga+ ion beam. Nano Res. 2014, 7, 1691-1698.

24

Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488-492.

25

Yuan, G. D.; Zhang, W. J.; Jie, J. S.; Fan, X.; Tang, J. X.; Shafiq, I.; Ye, Z. Z.; Lee, C. S.; Lee, S. T. Tunable n‐type conductivity and transport properties of Ga‐doped ZnO nanowire arrays. Adv. Mater. 2008, 20, 168-173.

26

Park, W. J.; Shin, H. S.; Ahn, B. D.; Kim, G. H.; Lee, S. M.; Kim, K. H.; Kim, H. J. Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor. Appl. Phys. Lett. 2008, 93, 083508.

27

Kamiya, T.; Nomura, K.; Hosono, H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J. Disp. Technol. 2009, 5, 468-483.

28

Jeong, S.; Ha, Y. G.; Moon, J.; Facchetti, A.; Marks, T. J. Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 2010, 22, 1346-1350.

29

Kim, G. H.; Jeong, W. H.; Kim, H. J. Electrical characteristics of solution‐processed InGaZnO thin film transistors depending on Ga concentration. Phys. Status Solidi (a) 2010, 207, 1677-1679.

30

Noh, H. -K.; Chang, K. J.; Ryu, B.; Lee, W. -J. Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors. Phys. Rev. B 2011, 84, 115205.

31

Yao, J. K.; Xu, N. S.; Deng, S. Z.; Chen, J.; She, J. C.; Shieh, H. -P. D.; Liu, P. -T.; Huang, Y. -P. Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy. IEEE. Trans. Electron Dev. 2011, 58, 1121-1126.

32

Zan, H. W.; Yeh, C. C.; Meng, H. F.; Tsai, C. C.; Chen, L. H. Achieving high field‐effect mobility in amorphous indium‐ gallium‐zinc oxide by capping a strong reduction layer. Adv. Mater. 2012, 24, 3509-3514.

33

Johnson, M. C.; Aloni, S.; McCready, D. E.; Bourret-Courchesne, E. D. Controlled vapor-liquid-solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport. Cryst. Growth Des. 2006, 6, 1936-1941.

34

Vomiero, A.; Ferroni, M.; Comini, E.; Faglia, G.; Sberveglieri, G. Insight into the formation mechanism of one-dimensional indium oxide wires. Cryst. Growth Des. 2010, 10, 140-145.

35

Schmidt, V.; Senz, S.; Gösele, U. Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism. Phys. Rev. B 2007, 75, 045335.

36

Fröberg, L. E.; Seifert, W.; Johansson, J. Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B 2007, 76, 153401.

37

Gao, T.; Wang, T. H. Catalytic growth of In2O3 nanobelts by vapor transport. J. Cryst. Growth 2006, 290, 660-664.

38

Yang, Z. -X.; Wang, F. Y.; Han, N.; Lin, H.; Cheung, H. -Y.; Fang, M.; Yip, S.; Hung, T.; Wong, C. -Y.; Ho, J. C. Crystalline GaSb nanowires synthesized on amorphous substrates: From the formation mechanism to p-channel transistor applications. ACS Appl. Mater. Interfaces 2013, 5, 10946-10952.

39

Yang, Z. -X.; Han, N.; Fang, M.; Lin, H.; Cheung, H. -Y.; Yip, S.; Wang, E. -J.; Hung, T.; Wong, C. -Y.; Ho, J. C. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat. Commun. 2014, 5, 5249.

40

Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Size‐dependent chemistry: Properties of nanocrystals. Chem. -Eur. J. 2002, 8, 28-35.

DOI
41

Volokitin, Y.; Sinzig, J.; de Jongh, L. J.; Schmid, G.; Vargaftik, M. N.; Moiseevi, I. I. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature 1996, 384, 621-623.

42

Chen, M.; Wang, X.; Yu, Y. H.; Pei, Z. L.; Bai, X. D.; Sun, C.; Huang, R. F.; Wen, L. S. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 2000, 158, 134-140.

43

Kumar, V.; Swart, H. C.; Ntwaeaborwa, O. M.; Kroon, R. E.; Terblans, J. J.; Shaat, S. K. K.; Yousif, A.; Duvenhage, M. M. Origin of the red emission in zinc oxide nanophosphors. Mater. Lett. 2013, 101, 57-60.

44

Yerushalmi, R.; Jacobson, Z. A.; Ho, J. C.; Fan, Z. Y.; Javey, A. Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 2007, 91, 203104.

45

Lee, J. S.; Chang, S.; Koo, S. -M.; Lee, S. Y. High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature. IEEE Electron Dev. Lett. 2010, 31, 225-227.

46

Nomura, K.; Takagi, A.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 2006, 45, 4303.

File
12274_2018_2106_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 March 2018
Revised: 26 April 2018
Accepted: 22 May 2018
Published: 14 June 2018
Issue date: November 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We acknowledge the General Research Fund (No. CityU 11275916) and the Theme-based Research Scheme (No. T42-103/16-N) of the Research Grants Council of Hong Kong SAR, China, the National Natural Science Foundation of China (Nos. 51672229 and 61605024), the Science Technology and Innovation Committee of Shenzhen Municipality (No. JCYJ20160229165240684) and a grant from the Shenzhen Research Institute, City University of Hong Kong.

Return