Journal Home > Volume 11 , Issue 11

Profiling of the electrical properties of nanowires (NWs) and NW heterocontacts with high spatial resolution is a challenge for any application and advanced NW device development. For appropriate NW analysis, we have established a four-point prober, which is combined in vacuo with a state-of-the-art vapor-liquid-solid preparation, enabling contamination-free NW characterization with high spatial resolution. With this ultrahigh-vacuum-based multi-tip scanning tunneling microscopy (MT-STM), we obtained the resistance and doping profiles of freestanding NWs, along with surface-sensitive information. Our in-system 4-probe STM approach decreased the detection limit for low dopant concentrations to the depleted case in upright standing NWs, while increasing the spatial resolution and considering radial depletion regions, which may originate from surface changes. Accordingly, the surface potential of oxide-free GaAs NW {112} facets has been estimated to be lower than 20 mV, indicating a NW surface with very low surface state density.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Investigation of charge carrier depletion in freestanding nanowires by a multi-probe scanning tunneling microscope

Show Author's information Andreas Nägelein1( )Matthias Steidl1Stefan Korte2,3Bert Voigtländer2,3Werner Prost4Peter Kleinschmidt1Thomas Hannappel1( )
Technische Universität Ilmenau, Institut für Physik,98693,Ilmenau,Germany
Peter Grünberg Institut (PGI-3),Forschungszentrum Jülich52425Jülich, Germany
JARA-Fundamentals of Future Information Technology,Forschungszentrum Jülich,52425,Jülich, Germany
Solid State Electronics DepartmentUniversity of Duisburg-Essen47057Duisburg, Germany

Abstract

Profiling of the electrical properties of nanowires (NWs) and NW heterocontacts with high spatial resolution is a challenge for any application and advanced NW device development. For appropriate NW analysis, we have established a four-point prober, which is combined in vacuo with a state-of-the-art vapor-liquid-solid preparation, enabling contamination-free NW characterization with high spatial resolution. With this ultrahigh-vacuum-based multi-tip scanning tunneling microscopy (MT-STM), we obtained the resistance and doping profiles of freestanding NWs, along with surface-sensitive information. Our in-system 4-probe STM approach decreased the detection limit for low dopant concentrations to the depleted case in upright standing NWs, while increasing the spatial resolution and considering radial depletion regions, which may originate from surface changes. Accordingly, the surface potential of oxide-free GaAs NW {112} facets has been estimated to be lower than 20 mV, indicating a NW surface with very low surface state density.

Keywords: oxidation, multi-tip scanning tunneling microscopy (MT-STM), electrical characterization, nanowires, charge carrier depletion

References(45)

1

Koester, R.; Sager, D.; Quitsch, W. A.; Pfingsten, O.; Poloczek, A.; Blumenthal, S.; Keller, G.; Prost, W.; Bacher, G.; Tegude, F. J. High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111). Nano Lett. 2015, 15, 2318-2323.

2

Kivisaari, P.; Berg, A.; Karimi, M.; Storm, K.; Limpert, S.; Oksanen, J.; Samuelson, L.; Pettersson, H.; Borgström, M. T. Optimization of current injection in algainp core-shell nanowire light-emitting diodes. Nano Lett. 2017, 17, 3599-3606.

3

Tomioka, K.; Izhizaka, F.; Fukui, T. Selective-area growth of InAs nanowires on Ge and vertical transistor application. Nano Lett. 2015, 15, 7253-7257.

4

Berg, M.; Kilpi, O. P.; Persson, K. M.; Svensson, J.; Hellenbrand, M.; Lind, E.; Wernersson, L. E. Electrical characterization and modeling of gate-last vertical InAs nanowire MOSFETs on Si. IEEE Electron Device Lett. 2016, 37, 966-969.

5

Svensson, J.; Dey, A. W.; Jacobsson, D.; Wernersson, L. E. Ⅲ-Ⅴ nanowire complementary metal-oxide semiconductor transistors monolithically integrated on Si. Nano Lett. 2015, 15, 7898-7904.

6

Aberg, I.; Vescovi, G.; Asoli, D.; Naseem, U.; Gilboy, J. P.; Sundvall, C.; Dahlgren, A.; Svensson, K. E.; Anttu, N.; Bjork, M. T. et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun. IEEE J. Photovoltaics 2016, 6, 185-190.

7

Zeng, Y.; Ye, Q. H.; Shen, W. Z. Design principles for single standing nanowire solar cells: Going beyond the planar efficiency limits. Sci. Rep. 2015, 4, 4915.

8

Wallentin, J.; Borgström, M. T. Doping of semiconductor nanowires. J. Mater. Res. 2011, 26, 2142-2156.

9

Gutsche, C.; Niepelt, R.; Gnauck, M.; Lysov, A.; Prost, W.; Ronning, C.; Tegude, F. J. Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions. Nano Lett. 2012, 12, 1453-1458.

10

Paiano, P.; Prete, P.; Lovergine, N.; Mancini, A. M. Size and shape control of GaAs nanowires grown by metalorganic vapor phase epitaxy using tertiarybutylarsine. J. Appl. Phys. 2006, 100, 094305.

11

Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Zhang, X.; Guo, Y.; Zou, J. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano Lett. 2007, 7, 921-926.

12

Simpkins, B. S.; Mastro, M. A.; Eddy, C. R., Jr.; Pehrsson, P. E. Surface depletion effects in semiconducting nanowires. J. Appl. Phys. 2008, 103, 104313.

13

Wang, D. W.; Chang, Y. L.; Wang, Q.; Cao, J.; Farmer, D. B.; Gordon, R. G.; Dai, H. J. Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc. 2004, 126, 11602-11611.

14

Korte, S.; Steidl, M.; Prost, W.; Cherepanov, V.; Voigtländer, B.; Zhao, W.; Kleinschmidt, P.; Hannappel, T. Resistance and dopant profiling along freestanding GaAs nanowires. Appl. Phys. Lett. 2013, 103, 143104.

15

Gutsche, C.; Regolin, I.; Blekker, K.; Lysov, A.; Prost, W.; Tegude, F. J. Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth. J. Appl. Phys. 2009, 105, 024305.

16

Miccoli, I.; Edler, F.; Prete, P.; Lovergine, N.; Pfnür, H.; Tegenkamp, C.; Surface-mediated electrical transport in single GaAs nanowires. In Proceedings of the 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOfIM 2015): Measurements in the World of Nanosensing, Lecce, Italy, 2015, pp 143-147.

DOI
17

Borgström, M. T.; Norberg, E.; Wickert, P.; Nilsson, H. A.; Trägårdh, J.; Dick, K. A.; Statkute, G.; Ramvall, P.; Deppert, K.; Samuelson, L. Precursor evaluation for in situ InP nanowire doping. Nanotechnology 2008, 19, 445602.

18

Dong, Y. J.; Tian, B. Z.; Kempa, T. J.; Lieber, C. M. Coaxial group Ⅲ-nitride nanowire photovoltaics. Nano Lett. 2009, 9, 2183-2187.

19

Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66-69.

20

Stern, E.; Cheng, G.; Cimpoiasu, E.; Klie, R.; Guthrie, S.; Klemic, J.; Kretzschmar, I.; Steinlauf, E.; Turner-Evans, D.; Broomfield, E. et al. Electrical characterization of single GaN nanowires. Nanotechnology 2005, 16, 2941-2953.

21

Hannappel, T.; Visbeck, S.; Töben, L.; Willig, F. Apparatus for investigating metalorganic chemical vapor deposition-grown semiconductors with ultrahigh-vacuum based techniques. Rev. Sci. Instrum. 2004, 75, 1297-1304.

22

Zhao, W.; Steidl, M.; Paszuk, A.; Brückner, S.; Dobrich, A.; Supplie, O.; Kleinschmidt, P.; Hannappel, T. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent Ⅲ-Ⅴ heteroepitaxy. Appl. Surf. Sci. 2017, 392, 1043-1048.

23

Supplie, O.; May, M. M.; Kleinschmidt, P.; Nägelein, A.; Paszuk, A.; Brückner, S.; Hannappel, T. In situ controlled heteroepitaxy of single-domain GaP on As-modified Si(100). APL Mater. 2015, 3, 126110.

24

Cherepanov, V.; Zubkov, E.; Junker, H.; Korte, S.; Blab, M.; Coenen, P.; Voigtländer, B. Ultra compact multitip scanning tunneling microscope with a diameter of 50 mm. Rev. Sci. Instrum. 2012, 83, 33707.

25

Hilsum, C. Simple empirical relationship between mobility and carrier concentration. Electron. Lett. 1974, 10, 259-260.

26

Sze, S. M.; Irvin, J. C. Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 K. Solid State Electron. 1968, 11, 599-602.

27

Strzalkowski, I.; Joshi, S.; Crowell, C. R. Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe. Appl. Phys. Lett. 1976, 28, 350-352.

28

Chia, A. C. E.; LaPierre, R. R. Analytical model of surface depletion in GaAs nanowires. J. Appl. Phys. 2012, 112, 063705.

29

Mareš, J. J.; Krištofik, J.; Šmid, V.; Zeman, J. On the d. c. conductivity in semi-insulating GaAs. Solid State Commun. 1986, 60, 275-276.

30

Kanagawa, T.; Hobara, R.; Matsuda, I.; Tanikawa, T.; Natori, A.; Hasegawa, S. Anisotropy in conductance of a quasi-one-dimensional metallic surface state measured by a square micro-four-point probe method. Phys. Rev. Lett. 2003, 91, 036805.

31

Wells, J. W.; Kallehauge, J. F.; Hansen, T. M.; Hofmann, P. Disentangling surface, bulk, and space-charge-layer conductivity in Si(111)-(7×7). Phys. Rev. Lett. 2006, 97, 206803.

32

Hasegawa, S.; Grey, F. Electronic transport at semiconductor surfaces-from point-contact transistor to micro-four-point probes. Surf. Sci. 2002, 500, 84-104.

33

Just, S.; Blab, M.; Korte, S.; Cherepanov, V.; Soltner, H.; Voigtländer, B. Surface and step conductivities on Si(111) surfaces. Phys. Rev. Lett. 2015, 115, 066801.

34

Thiandoume, C.; Sallet, V.; Triboulet, R.; Gorochov, O. Decomposition kinetics of tertiarybutanol and diethylzinc used as precursor sources for the growth of ZnO. J. Cryst. Growth 2009, 311, 1411-1415.

35

Pristovsek, M. Fundamental growth processes on different gallium arsenide surfaces in metal-organic vapor phase epitaxy. Ph. D. Dissertation, Technische Universität Berlin, 2001.

36

Jiang, N.; Wong-Leung, J.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C. Understanding the true shape of Au-catalyzed GaAs nanowires. Nano Lett. 2014, 14, 5865-5872.

37

Cahangirov, S.; Ciraci, S. First-principles study of GaAs nanowires. Phys. Rev. B 2009, 79, 165118.

38

Jacobi, K.; Platen, J.; Setzer, C.; Márquez, J.; Geelhaar, L.; Meyne, C.; Richter, W.; Kley, A.; Ruggerone, P.; Scheffler, M. Morphology, surface core-level shifts and surface energy of the faceted GaAs(112)A and (112)B surfaces. Surf. Sci. 1999, 439, 59-72.

39

Allwood, D. A.; Carline, R. T.; Mason, N. J.; Pickering, C.; Tanner, B. K.; Walker, P. J. Characterization of oxide layers on GaAs substrates. Thin Solid Films 2000, 364, 33-39.

40

Spicer, W. E.; Lindau, I.; Gregory, P. E.; Garner, C. M.; Pianetta, P.; Chye, P. W. Synchrotron radiation studies of electronic structure and surface chemistry of GaAs, GaSb, and InP. J. Vac. Sci. Technol. 1976, 13, 780-785.

41

M'Hamedi, O.; Proix, F.; Sebenne, C. Effects of atomic hydrogen on the surface properties of cleaved GaAs(110). Semicond. Sci. Technol. 1987, 2, 418-427.

42

Lüth, H. Solid Surfaces, Interfaces and Thin Films (Graduate Texts in Physics); 6th ed.; Springer International Publishing: Cham, 2015.

DOI
43

Jabeen, F.; Rubini, S.; Martelli, F.; Franciosi, A.; Kolmakov, A.; Gregoratti, L.; Amati, M.; Barinov, A.; Goldoni, A.; Kiskinova, M. Contactless monitoring of the diameter- dependent conductivity of GaAs nanowires. Nano Res. 2010, 3, 706-713.

44

Mares, J. J.; Kristofik, J.; Smid, V. Surface conductance in semi-insulating GaAs. Semicond. Sci. Technol. 1992, 7, 119-124.

45

Kreutz, E. W.; Schroll, P. Gap states at the GaAs-natural oxide interface. Surf. Technol. 1981, 12, 217-230.

File
12274_2018_2105_MOESM1_ESM.pdf (1,006.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 January 2018
Revised: 02 May 2018
Accepted: 22 May 2018
Published: 11 June 2018
Issue date: November 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors appreciate experimental support by Vasily Cherepanov, Franz-Peter Coenen, Antonio Müller and Mathias Biester. A. N. acknowledges a scholarship of the Carl Zeiss Stiftung. This work was supported by the German Federal Ministry of Education and Research (BMBF, project no. 03SF0404A) and was co-sponsored by the DFG research group 1616 "Dynamics and Interaction of Semiconductor Nanowires for Optoelectronics".

Return