Journal Home > Volume 11 , Issue 10

Hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Inflammatory processes play a key role in the progression of this disease and may be amenable to a targeted pharmaceutical intervention. Curcumin is a dietary compound with potent anti-inflammatory, antioxidant, and antiapoptotic properties but is limited in therapeutic applications due to its low aqueous solubility, low bioavailability, and rapid first-pass hepatic metabolism. To address these limitations, loading curcumin into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles may increase relevant pharmacokinetic parameters and allow for effective drug delivery to the brain. Using the Vannucci model of unilateral hypoxic-ischemic brain injury in neonatal rats, we studied the in vivo effect of curcumin-loaded PLGA-PEG nanoparticles on brain uptake and diffusion of curcumin and on neuroprotection. The curcumin-loaded nanoparticles were able to overcome the impaired blood–brain barrier, diffuse effectively through the brain parenchyma, localize in regions of injury, and deliver a protective effect in the injured neonatal brain. The application of curcumin and PLGA-PEG nanoparticle-mediated delivery to a clinically relevant model of neonatal brain injury provides greater opportunities for clinical translation of targeted therapies for hypoxic-ischemic encephalopathy.


menu
Abstract
Full text
Outline
About this article

Curcumin-loaded polymeric nanoparticles for neuroprotection in neonatal rats with hypoxic-ischemic encephalopathy

Show Author's information Andrea Joseph1Thomas Wood2Chih-Chung Chen1,Kylie Corry2Jessica M. Snyder3Sandra E. Juul2Pratik Parikh2Elizabeth Nance1,4( )
Department of Chemical EngineeringUniversity of WashingtonSeattleWA98195USA
Division of NeonatologyDepartment of PediatricsUniversity of WashingtonSeattleWA98195USA
Department of Comparative MedicineUniversity of WashingtonSeattleWA98195USA
Department of RadiologyUniversity of WashingtonSeattleWA98195USA

Present address: Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

Abstract

Hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Inflammatory processes play a key role in the progression of this disease and may be amenable to a targeted pharmaceutical intervention. Curcumin is a dietary compound with potent anti-inflammatory, antioxidant, and antiapoptotic properties but is limited in therapeutic applications due to its low aqueous solubility, low bioavailability, and rapid first-pass hepatic metabolism. To address these limitations, loading curcumin into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles may increase relevant pharmacokinetic parameters and allow for effective drug delivery to the brain. Using the Vannucci model of unilateral hypoxic-ischemic brain injury in neonatal rats, we studied the in vivo effect of curcumin-loaded PLGA-PEG nanoparticles on brain uptake and diffusion of curcumin and on neuroprotection. The curcumin-loaded nanoparticles were able to overcome the impaired blood–brain barrier, diffuse effectively through the brain parenchyma, localize in regions of injury, and deliver a protective effect in the injured neonatal brain. The application of curcumin and PLGA-PEG nanoparticle-mediated delivery to a clinically relevant model of neonatal brain injury provides greater opportunities for clinical translation of targeted therapies for hypoxic-ischemic encephalopathy.

Keywords: drug delivery, curcumin, neuroprotection, brain penetrating, neonatal hypoxia-ischemia, nanotherapeutics

References(93)

1

Parikh, P.; Juul, S. E. Neuroprotective strategies in neonatal brain injury. J. Pediatr. 2018, 192, 22–32.

2

Murray, C. J. L.; Lopez, A. D. Global mortality, disability, and the contribution of risk factors: Global burden of disease study. Lancet 1997, 349, 1436–1442.

3

Kurinczuk, J. J.; White-Koning, M.; Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 2010, 86, 329–338.

4

Robertson, C. M. T.; Perlman, M. Follow-up of the term infant after hypoxic-ischemic encephalopathy. Paediatr. Child Health 2006, 11, 278–282.

5

Jacobs, S. E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W. O.; Inder, T. E.; Davis, P. G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, CD003311.

6

Edwards, A. D.; Brocklehurst, P.; Gunn, A. J.; Halliday, H.; Juszczak, E.; Levene, M.; Strohm, B.; Thoresen, M.; Whitelaw, A.; Azzopardi, D. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: Synthesis and meta-analysis of trial data. BMJ 2010, 340, c363.

7

Dingley, J.; Liu, X.; Gill, H.; Smit, E.; Sabir, H.; Tooley, J.; Chakkarapani, E.; Windsor, D.; Thoresen, M. The feasibility of using a portable xenon delivery device to permit earlier xenon ventilation with therapeutic cooling of neonates during ambulance retrieval. Anesth. Analg. 2015, 120, 1331–1336.

8

Juul, S. E.; Comstock, B. A.; Heagerty, P. J.; Mayock, D. E.; Goodman, A. M.; Hauge, S.; Gonzalez, F.; Wu, Y. W. High-dose erythropoietin for asphyxia and encephalopathy (HEAL): A randomized controlled trial—Background, aims, and study protocol. Neonatology 2018, 113, 331–338.

9

Pauliah, S. S.; Shankaran, S.; Wade, A.; Cady, E. B.; Thayyil, S. Therapeutic hypothermia for neonatal encephalopathy in low-and middle-income countries: A systematic review and meta-analysis. PLoS One 2013, 8, e58834.

10

Zhang, Z. Y.; Jiang, M.; Fang, J.; Yang, M. F.; Zhang, S.; Yin, Y. X.; Li, D. W.; Mao, L. L.; Fu, X. Y.; Hou, Y. J. et al. Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood-brain barrier disruption through inhibition of inflammatory response and oxidative stress. Mol. Neurobiol. 2017, 54, 1–14.

11

Wu, A.; Noble, E. E.; Tyagi, E.; Ying, Z.; Zhuang, Y. M.; Gomez-Pinilla, F. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders. Biochim. Biophys. Acta 2015, 1852, 951–961.

12

Ishrat, T.; Hoda, M. N.; Khan, M. B.; Yousuf, S.; Ahmad, M.; Khan, M. M.; Ahmad, A.; Islam, F. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer's type (SDAT). Eur. Neuropsychopharmacol. 2009, 19, 636–647.

13

Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and health. Molecules 2016, 21, 264.

14

Sharma, R. A.; Steward, W. P.; Gescher, A. J. Pharmacokinetics and pharmacodynamics of curcumin. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Advances in Experimental Medicine and Biology; Aggarwal, B. B.; Surh, Y. J.; Shishodia, S., Eds.; Springer: Boston, MA, USA, 2007; Vol. 595, pp 453–454.

15

Patel, T.; Zhou, J. B.; Piepmeier, J. M.; Saltzman, W. M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 2012, 64, 701–705.

16

Kreuter, J. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev. 2001, 47, 65–81.

17

Gelperina, S.; Maksimenko, O.; Khalansky, A.; Vanchugova, L.; Shipulo, E.; Abbasova, K.; Berdiev, R.; Wohlfart, S.; Chepurnova, N.; Kreuter, J. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: Influence of the formulation parameters. Eur. J. Pharm. Biopharm. 2010, 74, 157–163.

18

Huang, N.; Lu, S.; Liu, X. G.; Zhu, J.; Wang, Y. J.; Liu, R. T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer's disease mice. Oncotarget 2017, 8, 81001–81013.

19

Sathya, S.; Shanmuganathan, B.; Saranya, S.; Vaidevi, S.; Ruckmani, K.; Devi, K. P. Phytol-loaded PLGA nanoparticle as a modulator of Alzheimer's toxic Aβ peptide aggregation and fibrillation associated with impaired neuronal cell function. Artif. Cells Nanomed. Biotechnol. , in press, DOI: 10.1080/21691401.2017.1391822.

20

Sánchez-López, E.; Egea, M. A.; Davis, B. M.; Guo, L.; Espina M.; Silva, A. M.; Calpena, A. C.; Souto, E. M. B.; Ravindran, N.; Ettcheto, M. et al. Memantine-loaded PEGylated biodegradable nanoparticles for the treatment of glaucoma. Small 2018, 14, 1701808.

21

Ruozi, B.; Belletti, D.; Sharma, H. S.; Sharma, A.; Muresanu, D. F.; Mössler, H.; Forni, F.; Vandelli, M. A.; Tosi, G. PLGA nanoparticles loaded cerebrolysin: Studies on their preparation and investigation of the effect of storage and serum stability with reference to traumatic brain injury. Mol. Neurobiol. 2015, 52, 899–912.

22

Dende, C.; Meena, J.; Nagarajan, P.; Nagaraj, V. A.; Panda, A. K.; Padmanaban, G. Nanocurcumin is superior to native curcumin in preventing degenerative changes in experimental cerebral malaria. Sci. Rep. 2017, 7, 10062.

23

Langert, K. A.; Goshu, B.; Stubbs, E. B., Jr. Attenuation of experimental autoimmune neuritis with locally administered lovastatin-encapsulating poly(lactic-co-glycolic) acid nanoparticles. J. Neurochem. 2017, 140, 334–346.

24

Tang, J.; Li, J. M.; Li, G.; Zhang, H. T.; Wang, L.; Li, D.; Ding, J. S. Spermidine-mediated poly(lactic-co-glycolic acid) nanoparticles containing fluorofenidone for the treatment of idiopathic pulmonary fibrosis. Int. J. Nanomedicine 2017, 12, 6687–6704.

25

Cai, Q.; Wang, L.; Deng, G.; Liu, J. H.; Chen, Q. X.; Chen, Z. B. Systemic delivery to central nervous system by engineered PLGA nanoparticles. Am. J. Transl. Res. 2016, 8, 749–764.

26

Nance, E. A.; Woodworth, G. F.; Sailor, K. A.; Shih, T. Y.; Xu, Q. G.; Swaminathan, G.; Xiang, D.; Eberhart, C.; Hanes, J. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 2012, 4, 149ra119.

27

Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

28

Mehvar, R. Modulation of the pharmacokinetics and pharmacodynamics of proteins by polyethylene glycol conjugation. J. Pharm. Pharm. Sci. 2000, 3, 125–136.

29

Gref, R.; Minamitake, Y.; Peracchia, M.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science 1994, 263, 1600–1603.

30

Yallapu, M. M.; Nagesh, P. K. B.; Jaggi, M.; Chauhan, S. C. Therapeutic applications of curcumin nanoformulations. AAPS J. 2015, 17, 1341–1356.

31

Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Kumar, D. S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer's disease. PLoS One 2012, 7, e32616.

32

Ray, B.; Bisht, S.; Maitra, A.; Maitra, A.; Lahiri, D. K. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc) in the neuronal cell culture and animal model: Implications for Alzheimer's disease. J. Alzheimers Dis. 2011, 23, 61–77.

33

Ahmad, N.; Ahmad, I.; Umar, S.; Iqbal, Z.; Samim, M.; Ahmad, F. J. PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToFMS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model. Drug Deliv. 2016, 23, 2095–2114.

34

Orunoğlu, M.; Kaffashi, A.; Pehlivan, S. B.; Şahin, S.; Söylemezoğlu, F.; Oğuz, K. K.; Mut, M. Effects of curcumin-loaded PLGA nanoparticles on the RG2 rat glioma model. Mater. Sci. Eng. C 2017, 78, 32–38.

35

Zhang, X. M.; Li, X. J.; Hua, H. C.; Wang, A. P.; Liu, W. H.; Li, Y. X.; Fu, F. H.; Shi, Y.; Sun, K. Cyclic hexapeptideconjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue. Int. J. Nanomedicine 2017, 12, 5717–5732.

36

Huang, H. C.; Xu, K.; Jiang, Z. F. Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibition of GSK-3β. J. Alzheimers Dis. 2012, 32, 981–996.

37

McDonald, J. W.; Johnston, M. V. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res. Rev. 1990, 15, 41–70.

38

Kole, A. J.; Annis, R. P.; Deshmukh, M. Mature neurons: Equipped for survival. Cell Death Dis. 2013, 4, e689.

39

Xu, Q. G.; Boylan, N. J.; Cai, S. T.; Miao, B. L.; Patel, H.; Hanes, J. Scalable method to produce biodegradable nanoparticles that rapidly penetrate human mucus. J. Control. Release 2013, 170, 279–286.

40

Natarajan, R.; Northrop, N.; Yamamoto, B. Fluorescein isothiocyanate (FITC)-dextran extravasation as a measure of blood-brain barrier permeability. Curr. Protoc. Neurosci. 2017, 79, 9.58.1–9.58.15.

41

Kellert, B. A.; McPherson, R. J.; Juul, S. E. A comparison of high-dose recombinant erythropoietin treatment regimens in brain-injured neonatal rats. Pediatr. Res. 2007, 61, 451–455.

42

Zhang, F.; Nance, E.; Alnasser, Y.; Kannan, R.; Kannan, S. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. J. Neuroinflammation 2016, 13, 65.

43

Nance, E.; Timbie, K.; Miller, G. W.; Song, J.; Louttit, C.; Klibanov, A. L.; Shih, T. -Y.; Swaminathan, G.; Tamargo, R. J.; Woodworth, G. F. et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood-brain barrier using MRI-guided focused ultrasound. J. Control. Release 2014, 189, 123–132.

44

Nance, E.; Zhang, C.; Shih, T. -Y.; Xu, Q. G.; Schuster, B. S.; Hanes, J. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS Nano 2014, 8, 10655–10664.

45

Nance, E.; Porambo, M.; Zhang, F.; Mishra, M. K.; Buelow, M.; Getzenberg, R.; Johnston, M.; Kannan, R. M.; Fatemi, A.; Kannan, S. Systemic dendrimer-drug treatment of ischemia-induced neonatal white matter injury. J. Control. Release 2015, 214, 112–120.

46

Nance, E.; Zhang, F.; Mishra, M. K.; Zhang, Z.; Kambhampati, S. P.; Kannan, R. M.; Kannan, S. Nanoscale effects in dendrimer-mediated targeting of neuroinflammation. Biomaterials 2016, 101, 96–107.

47

Juul, S. E.; Beyer, R. P.; Bammler, T. K.; McPherson, R. J.; Wilkerson, J.; Farin, F. M. Microarray analysis of high-dose recombinant erythropoietin treatment of unilateral brain injury in neonatal mouse hippocampus. Pediatr. Res. 2009, 65, 485–492.

48

Sabir, H.; Scull-Brown, E.; Liu, X.; Thoresen, M. Immediate hypothermia is not neuroprotective after severe hypoxia ischemia and is deleterious when delayed by 12 hours in neonatal rats. Stroke 2012, 43, 3364–33670.

49

Thoresen, M.; Bågenholm, R.; Løberg, E. M.; Apricena, F.; Kjellmer, I. Posthypoxic cooling of neonatal rats provides protection against brain injury. Arch. Dis. Child. Fetal Neonatal Ed. 1996, 74, F3–F9.

50

Thoresen, M.; Bågenholm, R.; Løberg, E. M.; Apriccna, F. The stress of being restrained reduces brain damage after a hypoxic-ischaemic insult in the 7-day-old rat. Neuroreport 1996, 7, 481–484.

51

Pin, T. W.; Eldridge, B.; Galea, M. P. A review of developmental outcomes of term infants with post-asphyxia neonatal encephalopathy. Eur. J. Paediatr. Neurol. 2009, 13, 224–234.

52

Traudt, C. M.; McPherson, R. J.; Bauer, L. A.; Richards, T. L.; Burbacher, T. M.; McAdams, R. M.; Juul, S. E. Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia. Dev. Neurosci. 2013, 35, 491–503.

53

Luo, J.; Borgens, R.; Shi, R. Y. Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J. Neurochem. 2002, 83, 471–480.

54

Wood, T.; Osredkar, D.; Puchades, M.; Maes, E.; Falck, M.; Flatebø, T.; Walløe, L.; Sabir, H.; Thoresen, M. Treatment temperature and insult severity influence the neuroprotective effects of therapeutic hypothermia. Sci. Rep. 2016, 6, 23430.

55

Vannucci, R. C.; Towfighi, J.; Heitjan, D. F.; Brucklacher, R. M. Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: An experimental study in the immature rat. Pediatrics 1995, 95, 868–874.

56

Sabir, H.; Osredkar, D.; Maes, E.; Wood, T.; Thoresen, M. Xenon combined with therapeutic hypothermia is not neuroprotective after severe hypoxia-ischemia in neonatal rats. PLoS One 2016, 11, e0156759.

57

Towfighi, J.; Mauger, D.; Vannucci, R. C.; Vannucci, S. J. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: A light microscopic study. Dev. Brain Res. 1997, 100, 149–160.

58

Wang, Y.; Li, S. -Y.; Shen, S.; Wang, J. Protecting neurons from cerebral ischemia/reperfusion injury via nanoparticlemediated delivery of an siRNA to inhibit microglial neurotoxicity. Biomaterials 2018, 161, 95–105.

59

Ishii, T.; Fukuta, T.; Agato, Y.; Oyama, D.; Yasuda, N.; Shimizu, K.; Kawaguchi, A. T.; Asai, T.; Oku, N. Nanoparticles accumulate in ischemic core and penumbra region even when cerebral perfusion is reduced. Biochem. Biophys. Res. Commun. 2013, 430, 1201–1205.

60

Ambruosi, A.; Gelperina, S.; Khalansky, A.; Tanski, S.; Theisen, A.; Kreuter, J. Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J. Microencapsul. 2006, 23, 582–592.

61

Ambruosi, A.; Khalansky, A. S.; Yamamoto, H.; Gelperina, S. E.; Begley, D. J.; Kreuter, J. Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastomabearing rats. J. Drug Target. 2006, 14, 97–105.

62

Kulkarni, S. A.; Feng, S. S. Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier. Nanomedicine 2011, 6, 377–394.

63

Na, J. H.; Koo, H.; Lee, S.; Min, K. H.; Park, K.; Yoo, H.; Lee, S. H.; Park, J. H.; Kwon, I. C.; Jeong, S. et al. Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials 2011, 32, 5252–5261.

64

Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R.H. "Stealth" corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B: Biointerfaces 2000, 18, 301–313.

65

Stolnik, S.; Dunn, S. E.; Garnett, M. C.; Davies, M. C.; Coombes, A. G. A.; Taylor, D. C.; Irving, M. P.; Purkiss, S. C.; Tadros, T. F.; Davis, S. S. et al. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm. Res. 1994, 11, 1800–1808.

66

Langer, R. W. Drug delivery and targeting. Nature 1998, 392, 5–10.

67

Zhang, C.; Nance, E. A.; Mastorakos, P.; Chisholm, J.; Berry, S.; Eberhart, C.; Tyler, B.; Brem, H.; Suk, J. S.; Hanes, J. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. J. Control. Release 2017, 263, 112–119.

68

Xiao, R. Z.; Zeng, Z. W.; Zhou, G. L.; Wang, J. J.; Li, F. Z.; Wang, A. M. Recent advances in PEG-PLA block copolymer nanoparticles. Int. J. Nanomedicine 2010, 5, 1057–1065.

69

Allison, S. D. Analysis of initial burst in PLGA microparticles. Expert Opin. Drug Deliv. 2008, 5, 615–628.

70

Yang, C. H.; Zhang, X. J.; Fan, H. G.; Liu, Y. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res. 2009, 1282, 133–141.

71

Esatbeyoglu, T.; Huebbe, P.; Ernst, I. M. A.; Chin, D.; Wagner, A. E.; Rimbach, G. Curcumin-from molecule to biological function. Angew. Chem., Int. Ed. 2012, 51, 5308–5332.

72

Lin, J. K. Molecular targets of curcumin. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Advances in Experimental Medicine and Biology; Aggarwal, B. B.; Surh, Y. J.; Shishodia, S., Eds.; Springer: Boston, MA, USA, 2007; Vol. 595, pp 227–243.

73

Zhu, H. T.; Bian, C.; Yuan, J. C.; Chu, W. H.; Xiang, X.; Chen, F.; Wang, C. S.; Feng, H.; Lin, J. K. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J. Neuroinflammation 2014, 11, 59.

74

Liu, Z. J.; Liu, W.; Liu, L.; Xiao, C.; Wang, Y.; Jiao, J. S. Curcumin protects neuron against cerebral ischemia-induced inflammation through improving PPAR-Gamma function. Evid. Based Complement. Alternat. Med. 2013, 2013, 470975.

75

Huang, H. C.; Chang, P.; Lu, S. -Y.; Zheng, B. -W.; Jiang, Z. -F. Protection of curcumin against amyloid-β-induced cell damage and death involves the prevention from NMDA receptor-mediated intracellular Ca2+ elevation. J. Recept. Signal Transduct. 2015, 35, 450–457.

76

Tiwari, S. K.; Agarwal, S.; Seth, B.; Yadav, A.; Nair, S.; Bhatnagar, P.; Karmakar, M.; Kumari, M.; Chauhan, L. K. S.; Patel, D. K. et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014, 8, 76–103.

77

Hagberg, H.; Gressens, P.; Mallard, C. Inflammation during fetal and neonatal life: Implications for neurologic and neuropsychiatric disease in children and adults. Ann. Neurol. 2012, 71, 444–457.

78

Vargas, D. L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A. W.; Pardo, C. A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005, 57, 67–81.

79

O'Callaghan, J. P.; Sriram, K.; Miller, D. B. Defining "neuroinflammation". Ann. N. Y. Acad. Sci. 2008, 1139, 318–330.

80

Hassell, K. J.; Ezzati, M.; Alonso-Alconada, D.; Hausenloy, D. J.; Robertson, N. J. New horizons for newborn brain protection: Enhancing endogenous neuroprotection. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F541–F552.

81

Ameruoso, A.; Palomba, R.; Palange, A. L.; Cervadoro, A.; Lee, A.; Di Mascolo, D.; Decuzzi, P. Ameliorating amyloid-β fibrils triggered inflammation via curcumin-loaded polymeric nanoconstructs. Front. Immunol. 2017, 8, 1411.

82

Umerska, A.; Gaucher, C.; Oyarzun-Ampuero, F.; Fries-Raeth, I.; Colin, F.; Villamizar-Sarmiento, M. G.; Maincent, P.; Sapin-Minet, A. Polymeric nanoparticles for increasing oral bioavailability of curcumin. Antioxidants 2018, 7, 46.

83

Verderio, P.; Bonetti, P.; Colombo, M.; Pandolfi, L.; Prosperi, D. Intracellular drug release from curcuminloaded PLGA nanoparticles induces G2/M block in breast cancer cells. Biomacromolecules 2013, 14, 672–682.

84

Basniwal, R. K.; Khosla, R.; Jain, N. Improving the anticancer activity of curcumin using nanocurcumin dispersion in water. Nutr. Cancer 2014, 66, 1015–1022.

85

Berger, H. R.; Morken, T. S.; Vettukattil, R.; Brubakk, A. -M.; Sonnewald, U.; Widerøe, M. No improvement of neuronal metabolism in the reperfusion phase with melatonin treatment after hypoxic-ischemic brain injury in the neonatal rat. J. Neurochem. 2016, 136, 339–350.

86

Di Giorgio, A. M.; Hou, Y. J.; Zhao, X. R.; Zhang, B.; Lyeth, B. G.; Russell, M. J. Dimethyl sulfoxide provides neuroprotection in a traumatic brain injury model. Restor. Neurol. Neurosci. 2008, 26, 501–507.

87

Smith, A. L.; Garbus, H.; Rosenkrantz, T. S.; Fitch, R. H. Sex differences in behavioral outcomes following temperature modulation during induced neonatal hypoxic ischemic injury in rats. Brain Sci. 2015, 5, 220–240.

88

Burnsed, J. C.; Chavez-Valdez, R.; Hossain, M. S.; Kesavan, K.; Martin, L. J.; Zhang, J. Y.; Northington, F. J. Hypoxiaischemia and therapeutic hypothermia in the neonatal mouse brain—A longitudinal study. PLoS One 2015, 10, e0118889.

89

Smith, A. L.; Alexander, M.; Rosenkrantz, T. S.; Sadek, M. L.; Fitch, R. H. Sex differences in behavioral outcome following neonatal hypoxia ischemia: Insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury. Exp. Neurol. 2014, 254, 54–67.

90

Cohen, S. S.; Stonestreet, B. S. Sex differences in behavioral outcome following neonatal hypoxia ischemia: Insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic injury. Exp. Neurol. 2014, 256, 70–73.

91

Nie, X. J.; Lowe, D. W.; Rollins, L. G.; Bentzley, J.; Fraser, J. L.; Martin, R.; Singh, I.; Jenkins, D. Sex-specific effects of N-acetylcysteine in neonatal rats treated with hypothermia after severe hypoxia-ischemia. Neurosci. Res. 2016, 108, 24–33.

92

Demarest, T. G.; McCarthy, M. M. Sex differences in mitochondrial (dys)function: Implications for neuroprotection. J. Bioenerg. Biomembr. 2015, 47, 173–188.

93

Jatana, M.; Singh, I.; Singh, A. K.; Jenkins, D. Combination of systemic hypothermia and N-acetylcysteine attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr. Res. 2006, 59, 684–689.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 March 2018
Revised: 15 May 2018
Accepted: 18 May 2018
Published: 08 June 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This manuscript was supported by the Burroughs Wellcome Fund Career Award at Scientific Interfaces (E. N.) and the University of Washington Department of Pediatrics Neonatal Biology Research Grant (P. P.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Burroughs Wellcome Fund.

Return