Journal Home > Volume 11 , Issue 11

The catalytic performance of metal nanoparticles is often affected by surface oxidation levels. Instead of post-synthesis oxidation/reduction, we propose an efficient method to modulate the oxidation levels by tuning the composition of bimetallic nanoparticles. Here we report a series of Pt–Re bimetallic nanoparticles synthesized via a facile thermal co-reduction process, with a uniform size of approximately 3 nm. The investigation of the growth of the Pt–Re nanoparticles suggests that the Re atoms were enriched on the surface, as confirmed by X-ray photoelectron spectroscopy. Furthermore, X-ray absorption spectroscopy showed that metallic Re was decreased and high-valency ReOx species were increased in particles with higher Re/Pt ratios. In the etherification of allylic alcohols catalyzed by Pt–Re nanoparticles of different compositions under ambient conditions, particles with higher Re/Pt ratios exhibited significantly better performances. The highest mass activity of Pt–Re bimetallic nanoparticles (127 μmol·g-1·s-1) was more than forty times that of the industrial catalyst CH3ReO3 (3 μmol·g-1·s-1). The catalytically active sites were associated with ReOx and could be tuned by adjusting the Pt ratio.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Composition-tuned oxidation levels of Pt–Re bimetallic nanoparticles for the etherification of allylic alcohols

Show Author's information Yuhao Wang1Lindong Li1Ke Wu1Rui Si2Lingdong Sun1( )Chunhua Yan1( )
Beijing National Laboratory for Molecular SciencesState Key Laboratory of Rare Earth Materials Chemistry and ApplicationsPKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic ChemistryCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
Shanghai Synchrotron Radiation FacilityShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201204China

Abstract

The catalytic performance of metal nanoparticles is often affected by surface oxidation levels. Instead of post-synthesis oxidation/reduction, we propose an efficient method to modulate the oxidation levels by tuning the composition of bimetallic nanoparticles. Here we report a series of Pt–Re bimetallic nanoparticles synthesized via a facile thermal co-reduction process, with a uniform size of approximately 3 nm. The investigation of the growth of the Pt–Re nanoparticles suggests that the Re atoms were enriched on the surface, as confirmed by X-ray photoelectron spectroscopy. Furthermore, X-ray absorption spectroscopy showed that metallic Re was decreased and high-valency ReOx species were increased in particles with higher Re/Pt ratios. In the etherification of allylic alcohols catalyzed by Pt–Re nanoparticles of different compositions under ambient conditions, particles with higher Re/Pt ratios exhibited significantly better performances. The highest mass activity of Pt–Re bimetallic nanoparticles (127 μmol·g-1·s-1) was more than forty times that of the industrial catalyst CH3ReO3 (3 μmol·g-1·s-1). The catalytically active sites were associated with ReOx and could be tuned by adjusting the Pt ratio.

Keywords: composition, nanocatalysis, Re, Pt, oxidation level, allylic alcohol

References(50)

1

Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825-1837.

2

Schlögl, R.; Hamid, S. B. A. Nanocatalysis: Mature science revisited or something really new? Angew. Chem., Int. Ed. 2004, 43, 1628-1637.

3

Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132-138.

4

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30-46.

5

Zahmakıran, M.; Özkar, S. Metal nanoparticles in liquid phase catalysis; from recent advances to future goals. Nanoscale 2011, 3, 3462-3481.

6

Wang, S. -B.; Zhu, W.; Ke, J.; Lin, M.; Zhang, Y. -W. Pd-Rh nanocrystals with tunable morphologies and compositions as efficient catalysts toward Suzuki cross-coupling reactions. ACS Catal. 2014, 4, 2298-2306.

7

Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365-1372.

8

Dai, L. -X.; Zhu, W.; Lin, M.; Zhang, Z. -P.; Gun, J.; Wang, Y. -H.; Zhang, Y. -W. Self-supported composites of thin Pt-Sn crosslinked nanowires for the highly chemoselective hydrogenation of cinnamaldehyde under ambient conditions. Inorg. Chem. Front. 2015, 2, 949-956.

9

Zhang, Z. -P.; Zhu, W.; Yan, C. -H.; Zhang, Y. -W. Selective synthesis of rhodium-based nanoframe catalysts by chemical etching of 3d metals. Chem. Commun. 2015, 51, 3997-4000.

10

Yu, J. -W.; Li, W. -Z.; Zhang, T.; Ma, D.; Zhang, Y. -W. Ruthenium nanoclusters dispersed on titania nanorods and nanoparticles as high-performance catalysts for aqueousphase Fischer-Tropsch synthesis. Catal. Sci. Technol. 2016, 6, 8355-8363.

11

Zhang, Z. -P.; Wang, X. -Y.; Yuan, K.; Zhu, W.; Zhang, T.; Wang, Y. -H.; Ke, J.; Zheng, X. -Y.; Yan, C. -H.; Zhang, Y. -W. Free-standing iridium and rhodium-based hierarchically-coiled ultrathin nanosheets for highly selective reduction of nitrobenzene to azoxybenzene under ambient conditions. Nanoscale 2016, 8, 15744-15752.

12

Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation. Chem. Soc. Rev. 2011, 40, 5068-5083.

13

Li, B. J.; Shi, Z. J. From C(sp2)-H to C(sp3)-H: Systematic studies on transition metal-catalyzed oxidative C-C formation. Chem. Soc. Rev. 2012, 41, 5588-5598.

14

Rouquet, G.; Chatani, N. Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. Angew. Chem., Int. Ed. 2013, 52, 11726-11743.

15

Li, Z. -X.; Xue, W.; Guan, B. -T.; Shi, F. -B.; Shi, Z. -J.; Jiang, H.; Yan, C. -H. A conceptual translation of homogeneous catalysis into heterogeneous catalysis: Homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter. Nanoscale 2013, 5, 1213-1220.

16

Hartwig, J. F. Evolution of C-H bond functionalization from methane to methodology. J. Am. Chem. Soc. 2016, 138, 2-24.

17

Kim, M.; Lee, S.; Kim, K.; Shin, D.; Kim, H.; Song, H. A highly Lewis-acidic Pd(Ⅳ) surface on Pd@SiO2 nanocatalysts for hydroalkoxylation reactions. Chem. Commun. 2014, 50, 14938-14941.

18

Lin, M.; Kang, L. -Q.; Gu, J.; Dai, L. -X.; Tang, S. -B.; Zhang, T.; Wang, Y. -H.; Li, L. -D.; Zheng, X. -Y.; Zhu, W. et al. Heterogeneous synergistic catalysis by Ru-RuOx nanoparticles for selenium-selenium bond activation. Nano Res. 2017, 10, 922-932.

19

Lin, M.; Dai, L. -X.; Gu, J.; Kang, L. -Q.; Wang, Y. -H.; Si, R.; Zhao, Z. -Q.; Liu, W. -C.; Fu, X.; Sun, L. -D. et al. Moderate oxidation levels of Ru nanoparticles enhance molecular oxygen activation for cross-dehydrogenative-coupling reactions via single electron transfer. RSC Adv. 2017, 7, 33078-33085.

20

Kim, K.; Jung, Y.; Lee, S.; Kim, M.; Shin, D.; Byun, H.; Cho, S. J.; Song, H.; Kim, H. Directed C-H activation and tandem cross-coupling reactions using palladium nanocatalysts with controlled oxidation. Angew. Chem., Int. Ed. 2017, 129, 7056-7060.

21

Friedrich, M.; Armbrüster, M. Crystallite size controls the crystal structure of Cu60Pd40 nanoparticles. Chem. Mater. 2009, 21, 5886-5891.

22

Chen, K. Y.; Koso, S.; Kubota, T.; Nakagawa, Y.; Tomishige, K. Chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1, 6-hexanediol over rhenium-modified carbon-supported rhodium catalysts. ChemCatChem 2010, 2, 547-555.

23

Shinmi, Y.; Koso, S.; Kubota, T.; Nakagawa, Y.; Tomishige, K. Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Appl. Catal. B: Environ. 2010, 94, 318-326.

24

Chen, K. Y.; Mori, K.; Watanabe, H.; Nakagawa, Y.; Tomishige, K. C-O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. J. Catal. 2012, 294, 171-183.

25

Tazawa, S.; Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. Deoxydehydration with molecular hydrogen over ceria-supported rhenium catalyst with gold promoter. ACS Catal. 2016, 6, 6393-6397.

26

Morrill, C.; Beutner, G. L.; Grubbs, R. H. Rhenium-catalyzed 1, 3-isomerization of allylic alcohols: Scope and chirality transfer. J. Org. Chem. 2006, 71, 7813-7825.

27

Wan, X. L.; Hu, J. D.; Xu, D. Y.; Shang, Y.; Zhen, Y. X.; Hu, C. C.; Xiao, F.; He, Y. -P.; Lai, Y. S.; Xie, W. Q. A Re2O7 catalyzed cycloetherification of monoallylic diols. Tetrahedron Lett. 2017, 58, 1090-1093.

28

Yang, H. W.; Fang, L.; Zhang, M.; Zhu, C. J. An efficient molybdenum(Ⅵ)-catalyzed direct substitution of allylic alcohols with nitrogen, oxygen, and carbon nucleophiles. Eur. J. Org. Chem. 2009, 2009, 666-672.

29

Ciftci, A.; Eren, S.; Ligthart, D. A. J. M.; Hensen, E. J. M. Platinum-rhenium synergy on reducible oxide supports in aqueous-phase glycerol reforming. ChemCatChem 2014, 6, 1260-1269.

30

Ciftci, A.; Ligthart, D. A. J. M.; Hensen, E. J. M. Aqueous phase reforming of glycerol over Re-promoted Pt and Rh catalysts. Green Chem. 2014, 16, 853-863.

31

Ciftci, A.; Ligthart, D. A. J. M.; Hensen, E. J. M. Influence of Pt particle size and Re addition by catalytic reduction on aqueous phase reforming of glycerol for carbon-supported Pt(Re) catalysts. Appl. Catal. B: Environ. 2015, 174-175, 126-135.

32

Yu, Y. S.; Yang, W. W.; Sun, X. L.; Zhu, W. L.; Li, X. -Z.; Sellmyer, D. J.; Sun, S. H. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 2014, 14, 2778-2782.

33

Yi, J.; Miller, J. T.; Zemlyanov, D. Y.; Zhang, R. H.; Dietrich, P. J.; Ribeiro, F. H.; Suslov, S.; Abu-Omar, M. M. A reusable unsupported rhenium nanocrystalline catalyst for acceptorless dehydrogenation of alcohols through γ-C-H activation. Angew. Chem., Int. Ed. 2014, 53, 833-836.

34

Bedia, J.; Calvo, L.; Lemus, J.; Quintanilla, A.; Casas, J. A.; Mohedano, A. F.; Zazo, J. A.; Rodriguez, J. J.; Gilarranz, M. A. Colloidal and microemulsion synthesis of rhenium nanoparticles in aqueous medium. Colloids Surf. A: Physicochem. Eng. Aspects 2015, 469, 202-210.

35

Ayvalı, T.; Lecante, P.; Fazzini, P. -F.; Gillet, A.; Philippot, K.; Chaudret, B. Facile synthesis of ultra-small rhenium nanoparticles. Chem. Commun. 2014, 50, 10809-10811.

36

Duke, A. S.; Xie, K. M.; Brandt, A. J.; Maddumapatabandi, T. D.; Ammal, S. C.; Heyden, A.; Monnier, J. R.; Chen, D. A. Understanding active sites in the water-gas shift reaction for Pt-Re catalysts on titania. ACS Catal. 2017, 7, 2597-2606.

37

Duke, A. S.; Galhenage, R. P.; Tenney, S. A.; Sutter, P.; Chen, D. A. In situ studies of carbon monoxide oxidation on platinum and platinum-rhenium alloy surfaces. J. Phys. Chem. C 2015, 119, 381-391.

38

Ramstad, A.; Strisland, F.; Raaen, S.; Worren, T.; Borg, A.; Berg, C. Growth and alloy formation studied by photoelectron spectroscopy and STM. Surf. Sci. 1999, 425, 57-67.

39

Komiyama, M.; Ogino, Y.; Akai, Y.; Goto, M. X-ray photoelectron spectroscopic studies of unsupported and supported rhenium using argon-ion bombardment. J. Chem. Soc., Faraday Trans. 2 1983, 79, 1719-1728.

40

Tysoe, W. T.; Zaera, F.; Somorjai, G. A. An XPS study of the oxidation and reduction of the rhenium-platinum system under atmospheric conditions. Surf. Sci. 1988, 200, 1-14.

41

Greiner, M. T.; Rocha, T. C. R.; Johnson, B.; Klyushin, A.; Knop-Gericke, A.; Schlögl, R. Z. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study. Z. Phys. Chem. 2014, 228, 521-541.

42

Lloyd-Jones, G. C. Mechanistic aspects of transition metal catalysed 1, 6-diene and 1, 6-enyne cycloisomerisation reactions. Org. Biomol. Chem. 2003, 1, 215-236.

43

Amada, Y.; Watanabe, H.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. Structure of ReOx clusters attached on the Ir metal surface in Ir-ReOx/SiO2 for the hydrogenolysis reaction. J. Phys. Chem. C 2012, 116, 23503-23514.

44

Wei, Z. H.; Karim, A. M.; Li, Y.; King, D. L.; Wang, Y. Elucidation of the roles of Re in steam reforming of glycerol over Pt-Re/C catalysts. J. Catal. 2015, 322, 49-59.

45

Zhang, L.; Karim, A. M.; Engelhard, M. H.; Wei, Z. H.; King, D. L.; Wang, Y. Correlation of Pt-Re surface properties with reaction pathways for the aqueous-phase reforming of glycerol. J. Catal. 2012, 287, 37-43.

46

Falcone, D. D.; Hack, J. H.; Klyushin, A. Y.; Knop-Gericke, A.; Schlögl, R.; Davis, R. J. Evidence for the bifunctional nature of Pt-Re catalysts for selective glycerol hydrogenolysis. ACS Catal. 2015, 5, 5679-5695.

47

Chia, M.; Pagán-Torres, Y. J.; Hibbitts, D.; Tan, Q. H.; Pham, H. N.; Datye, A. K.; Neurock, M.; Davis, R. J.; Dumesic, J. A. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts. J. Am. Chem. Soc. 2011, 133, 12675-12689.

48

Chia, M.; O'Neill, B. J.; Alamillo, R.; Dietrich, P. J.; Ribeiro, F. H.; Miller, J. T.; Dumesic, J. A. Bimetallic RhRe/C catalysts for the production of biomass-derived chemicals. J. Catal. 2013, 308, 226-236.

49

Ciftci, A.; Ligthart, D. A. J. M.; Sen, A. O.; van Hoof, A. J. F.; Friedrich, H.; Hensen, E. J. M. Pt-Re synergy in aqueousphase reforming of glycerol and the water-gas shift reaction. J. Catal. 2014, 311, 88-101.

50

Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer: Eden Prairie, MN, USA, 1992.

File
12274_2018_2102_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 February 2018
Revised: 18 April 2018
Accepted: 18 May 2018
Published: 05 June 2018
Issue date: November 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. 21461162001, 21025101, 21621061, and 21331001) and the National Basic Research Program of China (No. 2014CB643803) for financial support.

Return