Journal Home > Volume 11 , Issue 10

High-density lipoprotein (HDL) serves as a natural nanoparticle with compositional and functional heterogeneity and contributes to the maintenance of lipid metabolism and various biological functions. HDL also transports endogenous microRNAs, vitamins, hormones, and proteins through blood and interstitial fluids to various organs. These unique and diverse features of HDL have encouraged its applications for the transport of therapeutics and diagnostic reagents in the last decade. In this review, we describe the heterogeneous characteristics and biological functions of HDL and highlight HDL mimetic approaches, including apolipoprotein mimetic peptides and reconstituted HDL nanoparticles. Given the potential of HDL as a nanocarrier delivering various therapeutic agents, we discuss the current representative studies of HDL mimetic nanotherapeutics for cardiovascular and neurodegenerative diseases and analyze the current challenges and future perspective.


menu
Abstract
Full text
Outline
About this article

High-density lipoprotein mimetic nanotherapeutics for cardiovascular and neurodegenerative diseases

Show Author's information Song Ih Ahn1,2,§Hyun-Ji Park1,§Jiwon Yom1,2Taeyoung Kim1YongTae Kim1,2,3,4( )
George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaGA30332USA
Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
Institute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA

§ Song Ih Ahn and Hyun-Ji Park contributed equally to this work.

Abstract

High-density lipoprotein (HDL) serves as a natural nanoparticle with compositional and functional heterogeneity and contributes to the maintenance of lipid metabolism and various biological functions. HDL also transports endogenous microRNAs, vitamins, hormones, and proteins through blood and interstitial fluids to various organs. These unique and diverse features of HDL have encouraged its applications for the transport of therapeutics and diagnostic reagents in the last decade. In this review, we describe the heterogeneous characteristics and biological functions of HDL and highlight HDL mimetic approaches, including apolipoprotein mimetic peptides and reconstituted HDL nanoparticles. Given the potential of HDL as a nanocarrier delivering various therapeutic agents, we discuss the current representative studies of HDL mimetic nanotherapeutics for cardiovascular and neurodegenerative diseases and analyze the current challenges and future perspective.

Keywords: neurodegenerative disease, high-density lipoprotein, nanotherapeutic, cardiovascular disease

References(98)

1

Mahley, R. W.; Innerarity, T. L.; Rall, S. C., Jr.; Weisgraber, K. H. Plasma lipoproteins: Apolipoprotein structure and function. J. Lipid Res. 1984, 25, 1277–1294.

2

Oram, J. F. The cholesterol mobilizing transporter ABCA1 as a new therapeutic target for cardiovascular disease. Trends Cardiovas. Med. 2002, 12, 170–175.

3

Kontush, A.; Chapman, M. J. Functionally defective high-density lipoprotein: A new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol. Rev. 2006, 58, 342–374.

4

Mulder, W. J. M.; van Leent, M. M. T.; Lameijer, M.; Fisher, E. A.; Fayad, Z. A.; Pérez-Medina, C. High-density lipoprotein nanobiologics for precision medicine. Acc. Chem. Res. 2018, 51, 127–137.

5

Goldbourt, U.; Yaari, S.; Medalie, J. H. Isolated low HDL cholesterol as a risk factor for coronary heart disease mortality: A 21-year follow-up of 8, 000 men. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 107–113.

6

Kontush, A.; Lindahl, M.; Lhomme, M.; Calabresi, L.; Chapman, J. M.; Davidson, W. S. Structure of HDL: Particle subclasses and molecular components. High Density Lipoproteins 2015, 224, 3–51.

7

Deane, R.; Zlokovic, B. V. Role of the blood-brain barrier in the pathogenesis of Alzheimer's disease. Curr. Alzheimer Res. 2007, 4, 191–197.

8

Musiek, E. S.; Holtzman, D. M. Three dimensions of the amyloid hypothesis: Time, space and 'wingmen'. Nat. Neurosci. 2015, 18, 800–806.

9

Rosenblum, W. I. Why Alzheimer trials fail: Removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol. Aging 2014, 35, 969–974.

10

Vitali, C.; Wellington, C. L.; Calabresi, L. HDL and cholesterol handling in the brain. Cardiovasc. Res. 2014, 103, 405–413.

11

Chetty, P. S.; Nguyen, D.; Nickel, M.; Lund-Katz, S.; Mayne, L.; Englander, S. W.; Phillips, M. C. Comparison of apoA-I helical structure and stability in discoidal and spherical HDL particles by HX and mass spectrometry. J. Lipid Res. 2013, 54, 1589–1597.

12

Silva, R. A. G. D.; Huang, R.; Morris, J.; Fang, J. W.; Gracheva, E. O.; Ren, G.; Kontush, A.; Jerome, W. G.; Rye, K. A.; Davidson, W. S. Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc. Natl. Acad. Sci. USA 2008, 105, 12176–12181.

13

Franceschini, G. Apolipoprotein function in health and disease: Insights from natural mutations. Eur. J. Clin. Invest. 1996, 26, 733–746.

14

Li, W. H.; Tanimura, M.; Luo, C. C.; Datta, S.; Chan, L. The apolipoprotein multigene family: Biosynthesis, structure, structure-function relationships, and evolution. J. Lipid Res. 1988, 29, 245–271.

15

Law, A.; Scott, J. A cross-species comparison of the apolipoprotein-B domain that binds to the LDL receptor. J. Lipid Res. 1990, 31, 1109–1120.

16

DeKroon, R. M.; Mihovilovic, M.; Goodger, Z. V.; Robinette, J. B.; Sullivan, P. M.; Saunders, A. M.; Strittmatter, W. J. ApoE genotype-specific inhibition of apoptosis. J. Lipid Res. 2003, 44, 1566–1573.

17

Mikolasevic, I.; Žutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in patients with chronic kidney disease: Etiology and management. Int. J. Nephrol. Renovasc. Dis. 2017, 10, 35–45.

18

Cohn, J. S.; Batal, R.; Tremblay, M.; Jacques, H.; Veilleux, L.; Rodriguez, C.; Mamer, O.; Davignon, J. Plasma turnover of HDL apoC-I, apoC-Ⅲ, and apoE in humans: In vivo evidence for a link between HDL apoC-Ⅲ and apoA-I metabolism. J. Lipid Res. 2003, 44, 1976–1983.

19

Kingwell, B. A.; Chapman, M. J.; Kontush, A.; Miller, N. E. HDL-targeted therapies: Progress, failures and future. Nat. Rev. Drug Discov. 2014, 13, 445–464.

20

Linton, M. F.; Tao, H.; Linton, E. F.; Yancey, P. G. SR-BI: A multifunctional receptor in cholesterol homeostasis and atherosclerosis. Trends Endocrinol. Metab. 2017, 28, 461–472.

21

Yvan-Charvet, L.; Wang, N.; Tall, A. R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 139–143.

22

Vaughan, A. M.; Oram, J. F. ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J. Lipid Res. 2006, 47, 2433–2443.

23

Rinninger, F.; Heine, M.; Singaraja, R.; Hayden, M.; Brundert, M.; Ramakrishnan, R.; Heeren, J. High density lipoprotein metabolism in low density lipoprotein receptor-deficient mice. J. Lipid Res. 2014, 55, 1914–1924.

24

Galvani, S.; Sanson, M.; Blaho, V. A.; Swendeman, S. L.; Obinata, H.; Conger, H.; Dahlbäck, B.; Kono, M.; Proia, R. L.; Smith, J. D. et al. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci. Signal. 2015, 8, ra79.

25

Rhainds, D.; Brissette, L. The role of scavenger receptor class B type I (SR-BI) in lipid trafficking: Defining the rules for lipid traders. Int. J. Biochem. Cell Biol. 2004, 36, 39–77.

26

Tall, A. R.; Yvan-Charvet, L.; Terasaka, N.; Pagler, T.; Wang, N. HDL, ABC transporters, and cholesterol efflux: Implications for the treatment of atherosclerosis. Cell Metab. 2008, 7, 365–375.

27

Litvinov, D.; Mahini, H.; Garelnabi, M. Antioxidant and anti-inflammatory role of paraoxonase 1: Implication in arteriosclerosis diseases. N. Am. J. Med. Sci. 2012, 4, 523– 532.

28

Aharoni, S.; Aviram, M.; Fuhrman, B. Paraoxonase 1 (PON1) reduces macrophage inflammatory responses. Atherosclerosis 2013, 228, 353–361.

29

Speer, T.; Rohrer, L.; Blyszczuk, P.; Shroff, R.; Kuschnerus, K.; Kränkel, N.; Kania, G.; Zewinger, S.; Akhmedov, A.; Shi, Y. et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 2013, 38, 754–768.

30

Han, C. Y.; Tang, C. R.; Guevara, M. E.; Wei, H.; Wietecha, T.; Shao, B. H.; Subramanian, S.; Omer, M.; Wang, S. R.; O'Brien, K. D. et al. Serum amyloid A impairs the antiinflammatory properties of HDL. J. Clin. Invest. 2016, 126, 266–281.

31

Röhrl, C.; Stangl, H. HDL endocytosis and resecretion. Biochim. Biophys. Acta 2013, 1831, 1626–1633.

32

Kowal, R. C.; Herz, J.; Goldstein, J. L.; Esser, V.; Brown, M. S. Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc. Natl. Acad. Sci. USA 1989, 86, 5810–5814.

33

Mooberry, L. K.; Sabnis, N. A.; Panchoo, M.; Nagarajan, B.; Lacko, A. G. Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging. Front. Pharmacol. 2016, 7, 466.

34

Rodrigueza, W. V.; Thuahnai, S. T.; Temel, R. E.; Lund-Katz, S.; Phillips, M. C.; Williams, D. L. Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. J. Biol. Chem. 1999, 274, 20344–20350.

35

Shahzad, M. M. K.; Mangala, L. S.; Han, H. D.; Lu, C. H.; Bottsford-Miller, J.; Nishimura, M.; Mora, E. M.; Lee, J. W.; Stone, R. L.; Pecot, C. V. et al. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia 2011, 13, 309–319.

36

Zheng, Y.; Liu, Y. Y.; Jin, H. L.; Pan, S. T.; Qian, Y.; Huang, C.; Zeng, Y. X.; Luo, Q. M.; Zeng, M. S.; Zhang, Z. H. Scavenger receptor B1 is a potential biomarker of human nasopharyngeal carcinoma and its growth is inhibited by HDL-mimetic nanoparticles. Theranostics 2013, 3, 477–486.

37

Zhang, Z. H.; Chen, J.; Ding, L. L.; Jin, H. L.; Lovell, J. F.; Corbin, I. R.; Cao, W. G.; Lo, P. C.; Yang, M.; Tsao, M. S. et al. HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting. Small 2010, 6, 430–437.

38

Chen, W.; Jarzyna, P. A.; van Tilborg, G. A. F.; Nguyen, V. A.; Cormode, D. P.; Klink, A.; Griffioen, A. W.; Randolph, G. J.; Fisher, E. A.; Mulder, W. J. M. et al. RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB J. 2010, 24, 1689–1699.

39

Molino, Y.; David, M.; Varini, K.; Jabes, F.; Gaudin, N.; Fortoul, A.; Bakloul, K.; Masse, M.; Bernard, A.; Drobecq, L. et al. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J. 2017, 31, 1807–1827.

40

Blaho, V. A.; Galvani, S.; Engelbrecht, E.; Liu, C.; Swendeman, S. L.; Kono, M.; Proia, R. L.; Steinman, L.; Han, M. H.; Hla, T. HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature 2015, 523, 342–346.

41

Hatch, F. T.; Lees, R. S. Practical methods for plasma lipoprotein analysis. Adv. Lipid Res. 1968, 6, 1–68.

42

Havel, R. J.; Eder, H. A.; Bragdon, J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 1955, 34, 1345–1353.

43

Patsch, J. R.; Sailer, S.; Kostner, G.; Sandhofer, F.; Holasek, A.; Braunsteiner, H. Separation of the main lipoprotein density classes from human plasma by rate-zonal ultracentrifugation. J. Lipid Res. 1974, 15, 356–366.

44

McVicar, J. P.; Kunitake, S. T.; Hamilton, R. L.; Kane, J. P. Characteristics of human lipoproteins isolated by selected-affinity immunosorption of apolipoprotein A-I. Proc. Natl. Acad. Sci. USA 1984, 81, 1356–1360.

45

Okazaki, M.; Hara, I. Analysis of cholesterol in high density lipoprotein subfractions by high performance liquid chromatography. J. Biochem. 1980, 88, 1215–1218.

46

Lerch, P. G.; Förtsch, V.; Hodler, G.; Bolli, R. Production and characterization of a reconstituted high density lipoprotein for therapeutic applications. Vox Sang. 1996, 71, 155–164.

47

Bonomo, E. A.; Swaney, J. B. A rapid method for the synthesis of protein-lipid complexes using adsorption chromatography. J. Lipid Res. 1988, 29, 380–384.

48

Foit, L.; Giles, F. J.; Gordon, L. I.; Thaxton, C. S. Synthetic high-density lipoprotein-like nanoparticles for cancer therapy. Expert Rev. Anticancer Ther. 2015, 15, 27–34.

49

Ganzetti, G. S.; Busnelli, M.; Parolini, C.; Manzini, S.; Dellera, F.; Sirtori, C. R.; Chiesa, G. Apoa-I depletion in chow-fed apoeko mice severely worsens coronary atherosclerosis development. Atherosclerosis 2016, 252, e104.

50

Van Lenten, B. J.; Wagner, A. C.; Anantharamaiah, G. M.; Navab, M.; Reddy, S. T.; Buga, G. M.; Fogelman, A. M. Apolipoprotein A-I mimetic peptides. Curr. Atheroscler. Rep. 2009, 11, 52–57.

51

Sviridov, D.; Remaley, A. T. High-density lipoprotein mimetics: Promises and challenges. Biochem. J. 2015, 472, 249–259.

52

Marrache, S.; Dhar, S. Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc. Natl. Acad. Sci. USA 2013, 110, 9445–9450.

53

Zhang, Z. H.; Cao, W. G.; Jin, H. L.; Lovell, J. F.; Yang, M.; Ding, L. L.; Chen, J.; Corbin, I.; Luo, Q. M.; Zheng, G. Biomimetic nanocarrier for direct cytosolic drug delivery. Angew. Chem., Int. Ed. 2009, 48, 9171–9175.

54

Qin, S.; Kamanna, V. S.; Lai, J. H.; Liu, T.; Ganji, S. H.; Zhang, L.; Bachovchin, W. W.; Kashyap, M. L. Reverse D4F, an apolipoprotein-AI mimetic peptide, inhibits atherosclerosis in ApoE-null mice. J. Cardiovasc. Pharmacol. Ther. 2012, 17, 334–343.

55

Park, H. J.; Kuai, R.; Jeon, E. J.; Seo, Y.; Jung, Y.; Moon, J. J.; Schwendeman, A.; Cho, S. W. High-density lipoprotein-mimicking nanodiscs carrying peptide for enhanced therapeutic angiogenesis in diabetic hindlimb ischemia. Biomaterials 2018, 161, 69–80.

56

Amar, M. J. A.; D'Souza, W.; Turner, S.; Demosky, S.; Sviridov, D.; Stonik, J.; Luchoomun, J.; Voogt, J.; Hellerstein, M.; Sviridov, D. et al. 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice. J. Pharmacol. Exp. Ther. 2010, 334, 634–641.

57

Sviridov, D. O.; Andrianov, A. M.; Anishchenko, I. V.; Stonik, J. A.; Amar, M. J. A.; Turner, S.; Remaley, A. T. Hydrophobic amino acids in the hinge region of the 5A apolipoprotein mimetic peptide are essential for promoting cholesterol efflux by the ABCA1 transporter. J. Pharmacol. Exp. Ther. 2013, 344, 50–58.

58

Datta, G.; White, C. R.; Dashti, N.; Chaddha, M.; Palgunachari, M. N.; Gupta, H.; Handattu, S. P.; Garber, D. W.; Anantharamaiah, G. M. Anti-inflammatory and recycling properties of an apolipoprotein mimetic peptide, Ac-hE18A-NH2. Atherosclerosis 2010, 208, 134–141.

59

Miles, J.; Khan, M.; Painchaud, C.; Lalwani, N.; Drake, S.; Dasseux, J. L. Single-dose tolerability, pharmacokinetics, and cholesterol mobilization in HDL-C fraction following intravenous administration of ETC-642, a 22-mer ApoA-I analogue and phospholipids complex, in atherosclerosis patients. Arterioscler. Thromb. Vasc. Biol. 2004, 24, e19.

60

Di Bartolo, B. A.; Nicholls, S. J.; Bao, S. S.; Rye, K. A.; Heather, A. K.; Barter, P. J.; Bursill, C. The apolipoprotein A-I mimetic peptide ETC-642 exhibits anti-inflammatory properties that are comparable to high density lipoproteins. Atherosclerosis 2011, 217, 395–400.

61

Sethi, A. A.; Amar, M.; Shamburek, R. D.; Remaley, A. T. Apolipoprotein AI mimetic peptides: Possible new agents for the treatment of atherosclerosis. Curr. Opin. Investig. Drugs 2007, 8, 201–212.

62

Datta, G.; Chaddha, M.; Garber, D. W.; Chung, B. L.; Tytler, E. M.; Dashti, N.; Bradley, W. A.; Gianturco, S. H.; Anantharamaiah, G. M. The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL by fibroblasts. Biochemistry 2000, 39, 213–220.

63

Scanu, A. Binding of human serum high density lipoprotein apoprotein with aqueous dispersions of phospholipids. J. Biol. Chem. 1967, 242, 711–719.

64

Scanu, A.; Cump, E.; Toth, J.; Koga, S.; Stiller, E.; Albers, L. Degradation and reassembly of a human serum high-density lipoprotein. Evidence for differences in lipid affinity among three classes of polypeptide chains. Biochemistry 1970, 9, 1327–1335.

65

van den Elzen, P.; Garg, S.; León, L.; Brigl, M.; Leadbetter, E. A.; Gumperz, J. E.; Dascher, C. C.; Cheng, T. Y.; Sacks, F. M.; Illarionov, P. A. et al. Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 2005, 437, 906–910.

66

Tall, A. R. Studies on the transfer of phosphatidylcholine from unilamellar vesicles into plasma high density lipoproteins in the rat. J. Lipid Res. 1980, 21, 354–363.

67

Kim, Y.; Fay, F.; Cormode, D. P.; Sanchez-Gaytan, B. L.; Tang, J.; Hennessy, E. J.; Ma, M. M.; Moore, K.; Farokhzad, O. C.; Fisher, E. A. et al. Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics. ACS Nano 2013, 7, 9975–9983.

68

Toth, M. J.; Kim, T.; Kim, Y. Robust manufacturing of lipid-polymer nanoparticles through feedback control of parallelized swirling microvortices. Lab Chip 2017, 17, 2805–2813.

69

Ahn, J.; Sei, Y. J.; Jeon, N. L.; Kim, Y. Probing the effect of bioinspired nanomaterials on angiogenic sprouting with a microengineered vascular system. IEEE Trans. Nanotechnol. 2018, 17, 393–397.

70

Sei, Y. J.; Ahn, J.; Kim, T.; Shin, E.; Santiago-Lopez, A. J.; Jang, S. S.; Jeon, N. L.; Jang, Y. C.; Kim, Y. Detecting the functional complexities between high-density lipoprotein mimetics. Biomaterials 2018, 170, 58–69.

71

Kim, Y. T.; Chung, B. L.; Ma, M. M.; Mulder, W. J. M.; Fayad, Z. A.; Farokhzad, O. C.; Langer, R. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 2012, 12, 3587–3591.

72

Sanchez-Gaytan, B. L.; Fay, F.; Lobatto, M. E.; Tang, J.; Ouimet, M.; Kim, Y.; van der Staay, S. E. M.; van Rijs, S. M.; Priem, B.; Zhang, L. F. et al. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjug. Chem. 2015, 26, 443–451.

73

Benjamin, E. J.; Virani, S. S.; Callaway, C. W.; Chang, A. R.; Cheng, S. S.; Chiuve, S. E.; Cushman, M.; Delling, F. N.; Deo, R.; de Ferranti, S. D. et al. Heart disease and stroke statistics—2018 update: A report from the American heart association. Circulation 2018, 137, e67–e492.

74

Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

75

Tang, J. N.; Su, T.; Huang, K.; Dinh, P. U.; Wang, Z. G.; Vandergriff, A.; Hensley, M. T.; Cores, J.; Allen, T.; Li, T. S. et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat. Biomed. Eng. 2018, 2, 17–26.

76

Nguyen, M. M.; Carlini, A. S.; Chien, M. P.; Sonnenberg, S.; Luo, C.; Braden, R. L.; Osborn, K. G.; Li, Y. W.; Gianneschi, N. C.; Christman, K. L. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv. Mater. 2015, 27, 5547–5552.

77

Korin, N.; Kanapathipillai, M.; Matthews, B. D.; Crescente, M.; Brill, A.; Mammoto, T.; Ghosh, K.; Jurek, S.; Bencherif, S. A.; Bhatta, D. et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 2012, 337, 738–742.

78

Michael Gibson, C.; Korjian, S.; Tricoci, P.; Daaboul, Y.; Yee, M.; Jain, P.; Alexander, J. H.; Steg, P. G.; Lincoff, A. M.; Kastelein, J. J. P. et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: The AEGIS-I trial (ApoA-I event reducing in ischemic syndromes I). Circulation 2016, 134, 1918–1930.

79

Hovingh, G. K.; Smits, L. P.; Stefanutti, C.; Soran, H.; Kwok, S.; de Graaf, J.; Gaudet, D.; Keyserling, C. H.; Klepp, H.; Frick, J. et al. The effect of an apolipoprotein A-I-containing high-density lipoprotein-mimetic particle (CER-001) on carotid artery wall thickness in patients with homozygous familial hypercholesterolemia: The Modifying Orphan Disease Evaluation (MODE) study. Am. Heart. J. 2015, 169, 736–742. e1.

80

Tabet, F.; Vickers, K. C.; Cuesta Torres, L. F.; Wiese, C. B.; Shoucri, B. M.; Lambert, G.; Catherinet, C.; Prado-Lourenco, L.; Levin, M. G.; Thacker, S. et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun. 2014, 5, 3292.

81

Duivenvoorden, R.; Tang, J.; Cormode, D. P.; Mieszawska, A. J.; Izquierdo-Garcia, D.; Ozcan, C.; Otten, M. J.; Zaidi, N.; Lobatto, M. E.; van Rijs, S. M. et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat. Commun. 2014, 5, 3065.

82

Argraves, K. M.; Gazzolo, P. J.; Groh, E. M.; Wilkerson, B. A.; Matsuura, B. S.; Twal, W. O.; Hammad, S. M.; Argraves, W. S. High density lipoprotein-associated sphingosine 1-phosphate promotes endothelial barrier function. J. Biol. Chem. 2008, 283, 25074–25081.

83

Nanjee, M. N.; Doran, J. E.; Lerch, P. G.; Miller, N. E. Acute effects of intravenous infusion of ApoA1/phosphatidylcholine discs on plasma lipoproteins in humans. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 979–989.

84

Tardif, J. C.; Grégoire, J.; L'Allier, P. L.; Ibrahim, R.; Lespérance, J.; Heinonen, T. M.; Kouz, S.; Berry, C.; Basser, R.; Lavoie, M. A. et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: A randomized controlled trial. JAMA 2007, 297, 1675–1682.

85

Nasr, H.; Torsney, E.; Poston, R. N.; Hayes, L.; Gaze, D. C.; Basser, R.; Thompson, M. M.; Loftus, I. M.; Cockerill, G. W. Investigating the effect of a single infusion of reconstituted high-density lipoprotein in patients with symptomatic carotid plaques. Ann. Vasc. Surg. 2015, 29, 1380–1391.

86

Easton, R.; Gille, A.; D'Andrea, D.; Davis, R.; Wright, S. D.; Shear, C. A multiple ascending dose study of CSL112, an infused formulation of ApoA-I. J. Clin. Pharmacol. 2014, 54, 301–310.

87

Krause, B. R.; Remaley, A. T. Reconstituted HDL for the acute treatment of acute coronary syndrome. Curr. Opin. Lipidol. 2013, 24, 480–486.

88

Tricoci, P.; D'Andrea, D. M.; Gurbel, P. A.; Yao, Z. L.; Cuchel, M.; Winston, B.; Schott, R.; Weiss, R.; Blazing, M. A.; Cannon, L. et al. Infusion of reconstituted high-density lipoprotein, CSL112, in patients with atherosclerosis: Safety and pharmacokinetic results from a phase 2a randomized clinical trial. J. Am. Heart Assoc. 2015, 4, e002171.

89

Goffinet, M.; Tardy, C.; Bluteau, A.; Boubekeur, N.; Baron, R.; Keyserling, C.; Barbaras, R.; Lalwani, N.; Dasseux, J. L. Anti-atherosclerotic effect of CER-001, an engineered HDL-mimetic, in the high-fat diet-fed LDLr knockout mice. Circulation 2012, 126, A18667.

90

Tardif, J. C.; Ballantyne, C. M.; Barter, P.; Dasseux, J. L.; Fayad, Z. A.; Guertin, M. C.; Kastelein, J. J. P.; Keyserling, C.; Klepp, H.; Koenig, W. et al. Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: A randomized trial. Eur. Heart J. 2014, 35, 3277–3286.

91

Keyserling, C. H.; Hunt, T. L.; Klepp, H. M.; Scott, R. A.; Barbaras, R.; Schwendeman, A.; Lalwani, N.; Dasseux, J. L. CER-001, a synthetic HDL-mimetic, safely mobilizes cholesterol in healthy dyslipidemic volunteers. Circulation 2011, 124, A15525.

92

Vickers, K. C.; Palmisano, B. T.; Shoucri, B. M.; Shamburek, R. D.; Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell. Biol. 2011, 13, 423–433.

93

Alzheimer's Association. 2017 Alzheimer's disease facts and figures. Alzheimers Dement. 2017, 13, 325–373.

94

Stukas, S.; Robert, J.; Wellington, C. L. High-density lipoproteins and cerebrovascular integrity in Alzheimer's disease. Cell Metab. 2014, 19, 574–591.

95

Song, Q. X.; Huang, M.; Yao, L.; Wang, X. L.; Gu, X.; Chen, J.; Chen, J.; Huang, J. L.; Hu, Q. Y.; Kang, T. et al. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer's disease by accelerating the clearance of amyloid-beta. ACS Nano 2014, 8, 2345–2359.

96

Huang, M.; Hu, M.; Song, Q. X.; Song, H. H.; Huang, J. L.; Gu, X.; Wang, X. L.; Chen, J.; Kang, T.; Feng, X. Y. et al. GM1-modified lipoprotein-like nanoparticle: Multifunctional nanoplatform for the combination therapy of Alzheimer's disease. ACS Nano 2015, 9, 10801–10816.

97

Song, Q. X.; Song, H. H.; Xu, J. R.; Huang, J. L.; Hu, M.; Gu, X.; Chen, J.; Zheng, G.; Chen, H. Z.; Gao, X. L. Biomimetic ApoE-reconstituted high density lipoprotein nanocarrier for blood-brain barrier penetration and amyloid beta-targeting drug delivery. Mol. Pharm. 2016, 13, 3976– 3987.

98

Redondo, S.; Martínez-González, J.; Urraca, C.; Tejerina, T. Emerging therapeutic strategies to enhance HDL function. Lipids Health Dis. 2011, 10, 175.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 March 2018
Revised: 20 May 2018
Accepted: 21 May 2018
Published: 08 June 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Institutes of Health Director's New Innovator Award (No. 1DP2HL142050, Y. K.) and the American Heart Association Scientist Development (No. 15SDG25080314, Y. K.).

Return