Journal Home > Volume 11 , Issue 10

Nucleic acid vaccines have attracted enormous attention for resolving the limitations of conventional vaccines using live attenuated viruses. Because nucleic acid vaccines can be produced rapidly in response to the emergence of new virus strains, they are more appropriate for the control of urgent epidemic and pandemic issues. In particular, messenger RNA (mRNA) vaccines have evolved as a new type of nucleic acid vaccines in accordance with their superior protein expression and a lack of mutagenesis as compared with DNA vaccines. Using mRNA vaccines, large amounts of target proteins can be expressed in immune cells for efficient immunization. For instance, antigen-specific vaccination is a feasible option involving the expression of specific antigens in antigen-presenting cells. Immunological reactions are modulated by expressing several proteins associated with stimulation or maturation of immune cells. In addition, mRNA vaccines can stimulate innate immunity through specific recognition by pattern recognition receptors. On the basis of these remarkable properties, mRNA vaccines have been used for prophylactic and therapeutic applications. This review highlights the role of mRNA vaccines as prophylactic vaccines for prevention of future infections and as therapeutic vaccines for cancer immunotherapy. In addition to the conventional type of mRNA vaccines, RNA replicons (self-amplifying mRNA vaccines) will be described.


menu
Abstract
Full text
Outline
About this article

Development of mRNA vaccines and their prophylactic and therapeutic applications

Show Author's information Kyuri Lee§Minjeong Kim§Yunmi SeoHyukjin Lee( )
College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul13760Republic of Korea

§ Kyuri Lee and Minjeong Kim contributed equally to this work.

Abstract

Nucleic acid vaccines have attracted enormous attention for resolving the limitations of conventional vaccines using live attenuated viruses. Because nucleic acid vaccines can be produced rapidly in response to the emergence of new virus strains, they are more appropriate for the control of urgent epidemic and pandemic issues. In particular, messenger RNA (mRNA) vaccines have evolved as a new type of nucleic acid vaccines in accordance with their superior protein expression and a lack of mutagenesis as compared with DNA vaccines. Using mRNA vaccines, large amounts of target proteins can be expressed in immune cells for efficient immunization. For instance, antigen-specific vaccination is a feasible option involving the expression of specific antigens in antigen-presenting cells. Immunological reactions are modulated by expressing several proteins associated with stimulation or maturation of immune cells. In addition, mRNA vaccines can stimulate innate immunity through specific recognition by pattern recognition receptors. On the basis of these remarkable properties, mRNA vaccines have been used for prophylactic and therapeutic applications. This review highlights the role of mRNA vaccines as prophylactic vaccines for prevention of future infections and as therapeutic vaccines for cancer immunotherapy. In addition to the conventional type of mRNA vaccines, RNA replicons (self-amplifying mRNA vaccines) will be described.

Keywords: messenger RNA (mRNA) vaccines, prophylactic vaccines, self-amplifying mRNA vaccines, therapeutic vaccine, cancer immunotherapy

References(138)

1

Osterholm, M. T.; Kelley, N. S.; Sommer, A.; Belongia, E. A. Efficacy and effectiveness of influenza vaccines: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 36–44.

2

Ruiz-Palacios, G. M.; Pérez-Schael, I.; Velázquez, F. R.; Abate, H.; Breuer, T.; Clemens, S. C.; Cheuvart, B.; Espinoza, F.; Gillard, P.; Innis, B. L. et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N. Engl. J. Med. 2006, 354, 11–22.

3

Bernstein, D. I.; Sack, D. A.; Reisinger, K.; Rothstein, E.; Ward, R. L. Second-year follow-up evaluation of live, attenuated human rotavirus vaccine 89–12 in healthy infants. J. Infect. Dis. 2002, 186, 1487–1489.

4

Francis, T.; Salk, J. E.; Quilligan, J. J. Experience with vaccination against influenza in the spring of 1947: A preliminary report. Am. J. Public Health Nations Health 1947, 37, 1013–1016.

5

Vos, Q.; Lees, A.; Wu, Z. Q.; Snapper, C. M.; Mond, J. J. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol. Rev. 2000, 176, 154–170.

6

Liu, M. A. Immunologic basis of vaccine vectors. Immunity 2010, 33, 504–515.

7

Bousquet, J.; Lockey, R.; Malling, H. J. Allergen immunotherapy: Therapeutic vaccines for allergic diseases. A WHO position paper. J. Allergy Clin. Immunol. 1998, 102, 558–562.

8

Autran, B.; Carcelain, G.; Combadiere, B.; Debre, P. Therapeutic vaccines for chronic infections. Science 2004, 305, 205–208.

9

Michel, M. L.; Deng, Q.; Mancini-Bourgine, M. Therapeutic vaccines and immune-based therapies for the treatment of chronic hepatitis B: Perspectives and challenges. J. Hepatol. 2011, 54, 1286–1296.

10

Gröschel, M. I.; Prabowo, S. A.; Cardona, P. J.; Stanford, J. L.; van der Werf, T. S. Therapeutic vaccines for tuberculosis— A systematic review. Vaccine 2014, 32, 3162–3168.

11

Farkona, S.; Diamandis, E. P.; Blasutig, I. M. Cancer immunotherapy: The beginning of the end of cancer? BMC Med. 2016, 14, 73.

12

van der Burg, S. H. Therapeutic vaccines in cancer: Moving from immunomonitoring to immunoguiding. Expert Rev. Vaccines 2008, 7, 1–5.

13

Rosenberg, S. A.; Yang, J. C.; Restifo, N. P. Cancer immunotherapy: Moving beyond current vaccines. Nat. Med. 2004, 10, 909–915.

14

Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489.

15

Finn, O. J. Cancer vaccines: Between the idea and the reality. Nat. Rev. Immunol. 2003, 3, 630–641.

16

Formenti, S. C.; Demaria, S. Combining radiotherapy and cancer immunotherapy: A paradigm shift. J. Natl. Cancer Inst. 2013, 105, 256–265.

17

Moreno, C.; Cuesta-Herranz, J.; Fernandez-Tavora, L.; Alvarez-Cuesta, E. Immunotherapy safety: A prospective multi-centric monitoring study of biologically standardized therapeutic vaccines for allergic diseases. Clin. Exp. Allergy 2004, 34, 527–531.

18

Eggermonf, A. M. M. Therapeutic vaccines in solid tumours: Can they be harmful? Eur. J. Cancer 2009, 45, 2087–2090.

19

Morera, Y.; Bequet-Romero, M.; Ayala, M.; Velazco, J. C.; Perez, P. P.; Alba, J. S.; Ancizar, J.; Rodríguez, M.; Cosme, K.; Gavilondo, J. V. Immunogenicity and some safety features of a VEGF-based cancer therapeutic vaccine in rats, rabbits and non-human primates. Vaccine 2010, 28, 3453–3461.

20

Melero, I.; Gaudemack, G.; Gerritsen, W.; Huber, C.; Parmiani, G.; Scholl, S.; Thatcher, N.; Wagstaff, J.; Zielinski, C.; Faulkner, I. et al. Therapeutic vaccines for cancer: An overview of clinical trials. Nat. Rev. Clin. Oncol. 2014, 11, 509–524.

21

Geall, A. J.; Mandl, C. W.; Ulmer, J. B. RNA: The new revolution in nucleic acid vaccines. Semin. Immunol. 2013, 25, 152–159.

22

Liu, M. A. DNA vaccines: A review. J. Intern. Med. 2003, 253, 402–410.

23

Carrat, F.; Flahault, A. Influenza vaccine: The challenge of antigenic drift. Vaccine 2007, 25, 6852–6862.

24

Soema, P. C.; Kompier, R.; Amorij, J. P.; Kersten, G. F. A. Current and next generation influenza vaccines: Formulation and production strategies. Eur. J. Pharm. Biopharm. 2015, 94, 251–263.

25

Boni, M. F. Vaccination and antigenic drift in influenza. Vaccine 2008, 26, C8–C14.

26

Li, W. D.; Joshi, M. D.; Singhania, S.; Ramsey, K. H.; Murthy, A. K. Peptide vaccine: Progress and challenges. Vaccines 2014, 2, 515–536.

27

Hasan, U. A.; Abai, A. M.; Harper, D. R.; Wren, B. W.; Morrow, W. J. W. Nucleic acid immunization: Concepts and techniques associated with third generation vaccines. J. Immunol. Methods 1999, 229, 1–22.

28

Wolff, J. A.; Malone, R. W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P. L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468.

29

Kutzler, M. A.; Weiner, D. B. DNA vaccines: Ready for prime time? Nat. Rev. Genet. 2008, 9, 776–788.

30

Sardesai, N. Y.; Weiner, D. B. Electroporation delivery of DNA vaccines: Prospects for success. Curr. Opin. Immunol. 2011, 23, 421–429.

31

Donnelly, J. J.; Ulmer, J. B.; Liu, M. A. DNA vaccines. Dev. Biol. Stand. 1998, 95, 43–53.

32

Mahvi, D. M.; Sheehy, M. J.; Yang, N. S. DNA cancer vaccines: A gene gun approach. Immunol. Cell Biol. 1997, 75, 456–460.

33

Leitner, W. W.; Ying, H.; Restifo, N. P. DNA and RNA-based vaccines: Principles, progress and prospects. Vaccine 1999, 18, 765–777.

34

Ulmer, J. B.; Mason, P. W.; Geall, A.; Mandl, C. W. RNA-based vaccines. Vaccine 2012, 30, 4414–4418.

35

Sasaki, S.; Takeshita, F.; Xin, K. Q.; Ishii, N.; Okuda, K. Adjuvant formulations and delivery systems for DNA vaccines. Methods 2003, 31, 243–254.

36

Kojima, Y.; Xin, K. Q.; Ooki, T.; Hamajima, K.; Oikawa, T.; Shinoda, K.; Ozaki, T.; Hoshino, Y.; Jounai, N.; Nakazawa, M. et al. Adjuvant effect of multi-CpG motifs on an HIV-1 DNA vaccine. Vaccine 2002, 20, 2857–2865.

37

Scheerlinck, J. P. Y. Genetic adjuvants for DNA vaccines. Vaccine 2001, 19, 2647–2656.

38

Pascolo, S. Vaccination with messenger RNA. Methods Mol. Med. 2006, 127, 23–40.

39

Guan, S.; Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017, 24, 133–143.

40

Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279.

41

Thess, A.; Grund, S.; Mui, B. L.; Hope, M. J.; Baumhof, P.; Fotin-Mleczek, M.; Schlake, T. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 2015, 23, 1456–1464.

42

Karikó, K.; Muramatsu, H.; Ludwig, J.; Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011, 39, e142.

43

Tavernier, G.; Andries, O.; Demeester, J.; Sanders, N. N.; De Smedt, S. C.; Rejman, J. mRNA as gene therapeutic: How to control protein expression. J. Control. Release 2011, 150, 238–247.

44

Frolov, I.; Hoffman, T. A.; Prágai, B. M.; Dryga, S. A.; Huang, H. V.; Schlesinger, S.; Rice, C. M. Alphavirus-based expression vectors: Strategies and applications. Proc. Natl. Acad. Sci. USA 1996, 93, 11371–11377.

45

Brito, L. A.; Kommareddy, S.; Maione, D.; Uematsu, Y.; Giovani, C.; Scorza, F. B.; Otten, G. R.; Yu, D.; Mandl, C. W.; Mason, P. W. et al. Self-amplifying mRNA vaccines. Adv. Genet. 2015, 89, 179–233.

46

Petsch, B.; Schnee, M.; Vogel, A. B.; Lange, E.; Hoffmann, B.; Voss, D.; Schlake, T.; Thess, A.; Kallen, K. J.; Stitz, L. et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 2012, 30, 1210–1216.

47

Richner, J. M.; Himansu, S.; Dowd, K. A.; Butler, S. L.; Salazar, V.; Fox, J. M.; Julander, J. G.; Tang, W. W.; Shresta, S.; Pierson, T. C. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 2017, 168, 1114–1125. e10.

48

Forde, G. M. Rapid-response vaccines—Does DNA offer a solution? Nat. Biotechnol. 2005, 23, 1059–1062.

49

Pijlman, G. P.; Suhrbier, A.; Khromykh, A. A. Kunjin virus replicons: An RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opin. Biol. Ther. 2006, 6, 135–145.

50

Saxena, S.; Sonwane, A. A.; Dahiya, S. S.; Patel, C. L.; Saini, M.; Rai, A.; Gupta, P. K. Induction of immune responses and protection in mice against rabies using a self-replicating RNA vaccine encoding rabies virus glycoprotein. Vet. Microbiol. 2009, 136, 36–44.

51

Bourquin, C.; Schmidt, L.; Hornung, V.; Wurzenberger, C.; Anz, D.; Sandholzer, N.; Schreiber, S.; Voelkl, A.; Hartmann, G.; Endres, S. Immunostimulatory RNA oligonucleotides trigger an antigen-specific cytotoxic T-cell and IgG2a response. Blood 2007, 109, 2953–2960.

52

Diebold, S. S.; Kaisho, T.; Hemmi, H.; Akira, S.; Sousa, C. R. E. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004, 303, 1529–1531.

53

Van Lint, S.; Renmans, D.; Broos, K.; Dewitte, H.; Lentacker, I.; Heirman, C.; Breckpot, K.; Thielemans, K. The ReNAissanCe of mRNA-based cancer therapy. Expert Rev. Vaccines 2015, 14, 235–251.

54

Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K. J. Developing mRNA-vaccine technologies. RNA Biol. 2012, 9, 1319–1330.

55

Deering, R. P.; Kommareddy, S.; Ulmer, J. B.; Brito, L. A.; Geall, A. J. Nucleic acid vaccines: Prospects for non-viral delivery of mRNA vaccines. Expert Opin. Drug Deliv. 2014, 11, 885–899.

56

Cho, N. H.; Cheong, T. C.; Min, J. H.; Wu, J. H.; Lee, S. J.; Kim, D.; Yang, J. S.; Kim, S.; Kim, Y. K.; Seong, S. Y. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 2011, 6, 675–682.

57

Su, X. F.; Fricke, J.; Kavanagh, D. G.; Irvine, D. J. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol. Pharmaceut. 2011, 8, 774–787.

58

Rollier, C. S.; Reyes-Sandoval, A.; Cottingham, M. G.; Ewer, K.; Hill, A. V. S. Viral vectors as vaccine platforms: Deployment in sight. Curr. Opin. Immunol. 2011, 23, 377– 382.

59

Harrop, R.; John, J.; Carroll, M. W. Recombinant viral vectors: Cancer vaccines. Adv. Drug Deliv. Rev. 2006, 58, 931–947.

60

Nascimento, I. P.; Leite, L. C. C. Recombinant vaccines and the development of new vaccine strategies. Braz. J. Med. Biol. Res. 2012, 45, 1102–1111.

61

Hollevoet, K.; Declerck, P. J. State of play and clinical prospects of antibody gene transfer. J. Transl. Med. 2017, 15, 131.

62

Johanning, F. W.; Conry, R. M.; LoBuglio, A. F.; Wright, M.; Sumerel, L. A.; Pike, M. J.; Curiel, D. T. A sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo. Nucleic Acids Res. 1995, 23, 1495–1501.

63

Fotin-Mleczek, M.; Duchardt, K. M.; Lorenz, C.; Pfeiffer, R.; Ojkić-Zrna, S.; Probst, J.; Kallen, K. J. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother. 2011, 34, 1–15.

64

Weide, B.; Pascolo, S.; Scheel, B.; Derhovanessian, E.; Pflugfelder, A.; Eigentler, T. K.; Pawelec, G.; Hoerr, I.; Rammensee, H. G.; Garbe, C. Direct injection of protamine-protected mRNA: Results of a phase 1/2 vaccination trial in metastatic melanoma patients. J. Immunother. 2009, 32, 498–507.

65

Islam, M. A.; Reesor, E. K. G.; Xu, Y. J.; Zope, H. R.; Zetter, B. R.; Shi, J. J. Biomaterials for mRNA delivery. Biomater. Sci. 2015, 3, 1519–1533.

66

Phua, K. K. L.; Nair, S. K.; Leong, K. W. Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale 2014, 6, 7715–7729.

67

Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M. F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404–1413.

68

Liu, H. P.; Irvine, D. J. Guiding principles in the design of molecular bioconjugates for vaccine applications. Bioconjug. Chem. 2015, 26, 791–801.

69

Apostolopoulos, V.; Barnes, N.; Pietersz, G. A.; McKenzie, I. F. C. Ex vivo targeting of the macrophage mannose receptor generates anti-tumor CTL responses. Vaccine 2000, 18, 3174–3184.

70

Gao, J. M.; Chen, P. M.; Singh, Y.; Zhang, X. P.; Szekely, Z.; Stein, S.; Sinko, P. J. Novel monodisperse PEGtide dendrons: Design, fabrication, and evaluation of mannose receptor-mediated macrophage targeting. Bioconjug. Chem. 2013, 24, 1332–1344.

71

Macri, C.; Dumont, C.; Johnston, A. P. R.; Mintern, J. D. Targeting dendritic cells: A promising strategy to improve vaccine effectiveness. Clin. Transl. Immunol. 2016, 5, e66.

72

Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics— Developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780.

73

Kwon, H.; Kim, M.; Seo, Y.; Moon, Y. S.; Lee, H. J.; Lee, K.; Lee, H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2018, 156, 172–193.

74

Strenkowska, M.; Kowalska, J.; Lukaszewicz, M.; Zuberek, J.; Su, W.; Rhoads, R. E.; Darzynkiewicz, E.; Jemielity, J. Towards mRNA with superior translational activity: Synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications. New J. Chem. 2010, 34, 993–1007.

75

Mockey, M.; Gonçalves, C.; Dupuy, F. P.; Lemoine, F. M.; Pichon, C.; Midoux, P. mRNA transfection of dendritic cells: Synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem. Biophys. Res. Commun. 2006, 340, 1062–1068.

76

Gerdil, C. The annual production cycle for influenza vaccine. Vaccine 2003, 21, 1776–1779.

77

Kieny, M. P.; Costa, A.; Hombach, J.; Carrasco, P.; Pervikov, Y.; Salisbury, D.; Greco, M.; Gust, I.; LaForce, M.; Franco-Paredes, C. et al. A global pandemic influenza vaccine action plan. Vaccine 2006, 24, 6367–6370.

78

Geall, A. J.; Verma, A.; Otten, G. R.; Shaw, C. A.; Hekele, A.; Banerjee, K.; Cu, Y.; Beard, C. W.; Brito, L. A.; Krucker, T. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl. Acad. Sci. USA 2012, 109, 14604–14609.

79

Hekele, A.; Bertholet, S.; Archer, J.; Gibson, D. G.; Palladino, G.; Brito, L. A.; Otten, G. R.; Brazzoli, M.; Buccato, S.; Bonci, A. et al. Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2013, 2, e52.

80

Semple, S. C.; Akinc, A.; Chen, J. X.; Sandhu, A. P.; Mui, B. L.; Cho, C. K.; Sah, D. W. Y.; Stebbing, D.; Crosley, E. J.; Yaworski, E. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28, 172–176.

81

Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.

82

Brito, L. A.; Chan, M.; Shaw, C. A.; Hekele, A.; Carsillo, T.; Schaefer, M.; Archer, J.; Seubert, A.; Otten, G. R.; Beard, C. W. et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 2014, 22, 2118– 2129.

83

Podda, A. The adjuvanted influenza vaccines with novel adjuvants: Experience with the MF59-adjuvanted vaccine. Vaccine 2001, 19, 2673–2680.

84

Podda, A.; Del Giudice, G. MF59-adjuvanted vaccines: Increased immunogenicity with an optimal safety profile. Expert Rev. Vaccines 2003, 2, 197–203.

85

Urruticoechea, A.; Alemany, R.; Balart, J.; Villanueva, A.; Vinals, F.; Capella, G. Recent advances in cancer therapy: An overview. Curr. Pharm. Des. 2010, 16, 3–10.

86

Huang, M.; Shen, A. J.; Ding, J.; Geng, M. Y. Molecularly targeted cancer therapy: Some lessons from the past decade. Trends Pharmacol. Sci. 2014, 35, 41–50.

87

Connors, T. Anticancer drug development: The way forward. Oncologist 1996, 1, 180–181.

88

DeVita, V. T.; Chu, E. A history of cancer chemotherapy. Cancer Res. 2008, 68, 8643–8653.

89

Baudino, T. A. Targeted cancer therapy: The next generation of cancer treatment. Curr. Drug Discov. Technol. 2015, 12, 3–20.

90

Ramirez, L. Y.; Huestis, S. E.; Yap, T. Y.; Zyzanski, S.; Drotar, D.; Kodish, E. Potential chemotherapy side effects: What do oncologists tell parents? Pediatr. Blood Cancer 2009, 52, 497–502.

91

Sartore-Bianchi, A.; Martini, M.; Molinari, F.; Veronese, S.; Nichelatti, M.; Artale, S.; Di Nicolantonio, F.; Saletti, P.; De Dosso, S.; Mazzucchelli, L. et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009, 69, 1851–1857.

92

Sharma, S. V.; Bell, D. W.; Settleman, J.; Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 2007, 7, 169–181.

93

Siena, S.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Balfour, J.; Bardelli, A. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J. Natl. Cancer Inst. 2009, 101, 1308–1324.

94

Tsai, H. F.; Hsu, P. N. Cancer immunotherapy by targeting immune checkpoints: Mechanism of T cell dysfunction in cancer immunity and new therapeutic targets. J. Biomed. Sci. 2017, 24, 35.

95

Tavares, A. B. M. L. A.; Neto, J. X. L.; Fulco, U. L.; Albuquerque, E. L. Inhibition of the checkpoint protein PD-1 by the therapeutic antibody pembrolizumab outlined by quantum chemistry. Sci. Rep. 2018, 8, 1840.

96

Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264.

97

Dine, J.; Gordon, R.; Shames, Y.; Kasler, M. K.; Barton-Burke, M. Immune checkpoint inhibitors: An innovation in immunotherapy for the treatment and management of patients with cancer. Asia Pac. J. Oncol. Nurs. 2017, 4, 127–135.

98

Wada, S.; Jackson, C. M.; Yoshimura, K.; Yen, H. R.; Getnet, D.; Harris, T. J.; Goldberg, M. V.; Bruno, T. C.; Grosso, J. F.; Durham, N. et al. Sequencing CTLA-4 blockade with cell-based immunotherapy for prostate cancer. J. Transl. Med. 2013, 11, 89.

99

Belcaid, Z.; Phallen, J. A.; Zeng, J.; See, A. P.; Mathios, D.; Gottschalk, C.; Nicholas, S.; Kellett, M.; Ruzevick, J.; Jackson, C. et al. Focal radiation therapy combined with 4–1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PLoS One 2014, 9, e101764.

100

Taggart, D.; Andreou, T.; Scott, K. J.; Williams, J.; Rippaus, N.; Brownlie, R. J.; Ilett, E. J.; Salmond, R. J.; Melcher, A.; Lorger, M. Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8+ T cell trafficking. Proc. Natl. Acad. Sci. USA 2018, 115, E1540–E1549.

101

Lewis, K. E.; Selby, M. J.; Masters, G.; Valle, J.; Dito, G.; Curtis, W. R.; Garcia, R.; Mink, K. A.; Waggie, K. S.; Holdren, M. S. et al. Interleukin-21 combined with PD-1 or CTLA-4 blockade enhances antitumor immunity in mouse tumor models. Oncoimmunology 2018, 7, e1377873.

102

Takeuchi, Y.; Tanemura, A.; Tada, Y.; Katayama, I.; Kumanogoh, A.; Nishikawa, H. Clinical response to PD-1 blockade correlates with a sub-fraction of peripheral central memory CD4+ T cells in patients with malignant melanoma. Int. Immunol. 2018, 30, 13–22.

103

O'Neil, B. H.; Wallmark, J. M.; Lorente, D.; Elez, E.; Raimbourg, J.; Gomez-Roca, C.; Ejadi, S.; Piha-Paul, S. A.; Stein, M. N.; Razak, A. R. A. et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma. PLoS One 2017, 12, e0189848.

104

Li, H.; Li, X. Q.; Liu, S.; Guo, L.; Zhang, B.; Zhang, J. B.; Ye, Q. H. Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology 2017, 66, 1920–1933.

105

Huang, G. H.; Sun, X.; Liu, D. P.; Zhang, Y. F.; Zhang, B. X.; Xiao, G. D.; Li, X.; Gao, X.; Hu, C. H.; Wang, M. et al. The efficacy and safety of anti-PD-1/PD-L1 antibody therapy versus docetaxel for pretreated advanced NSCLC: A meta-analysis. Oncotarget 2018, 9, 4239–4248.

106

Gong, J.; Chehrazi-Raffle, A.; Reddi, S.; Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J. Immunother. Cancer 2018, 6, 8.

107

Schlom, J. Therapeutic cancer vaccines: Current status and moving forward. J. Natl. Cancer Inst. 2012, 104, 599–613.

108

Guo, C. Q.; Manjili, M. H.; Subjeck, J. R.; Sarkar, D.; Fisher, P. B.; Wang, X. Y. Therapeutic cancer vaccines: Past, present, and future. Adv. Cancer Res. 2013, 119, 421–475.

109

Kim, R.; Emi, M.; Tanabe, K. Cancer immunoediting from immune surveillance to immune escape. Immunology 2007, 121, 1–14.

110

Swann, J. B.; Smyth, M. J. Immune surveillance of tumors. J. Clin. Invest. 2007, 117, 1137–1146.

111

Rice, J.; Ottensmeier, C. H.; Stevenson, F. K. DNA vaccines: Precision tools for activating effective immunity against cancer. Nat. Rev. Cancer 2008, 8, 108–120.

112

Fotin-Mleczek, M.; Zanzinger, K.; Heidenreich, R.; Lorenz, C.; Thess, A.; Duchardt, K. M.; Kallen, K. J. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J. Gene Med. 2012, 14, 428–439.

113

Bonehill, A.; Tuyaerts, S.; Van Nuffel, A. M.; Heirman, C.; Bos, T. J.; Fostier, K.; Neyns, B.; Thielemans, K. Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol. Ther. 2008, 16, 1170–1180.

114

Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401.

115

Thomas, A. M.; Santarsiero, L. M.; Lutz, E. R.; Armstrong, T. D.; Chen, Y. C.; Huang, L. Q.; Laheru, D. A.; Goggins, M.; Hruban, R. H.; Jaffee, E. M. Mesothelin-specific CD8+ T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J. Exp. Med. 2004, 200, 297–306.

116

Nair, S. K.; Snyder, D.; Rouse, B. T.; Gilboa, E. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int. J. Cancer 1997, 70, 706–718.

DOI
117

Anderson, C. F.; Lucas, M.; Gutierrez-Kobeh, L.; Field, A. E.; Mosser, D. M. T cell biasing by activated dendritic cells. J. Immunol. 2004, 173, 955–961.

118

Chauvin, C.; Josien, R. Dendritic cells as killers: Mechanistic aspects and potential roles. J. Immunol. 2008, 181, 11–16.

119

Lehtonen, A.; Ahlfors, H.; Veckman, V.; Miettinen, M.; Lahesmaa, R.; Julkunen, I. Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells. J. Leukocyte Biol. 2007, 82, 710–720.

120

Van Lint, S.; Goyvaerts, C.; Maenhout, S.; Goethals, L.; Disy, A.; Benteyn, D.; Pen, J.; Bonehill, A.; Heirman, C.; Breckpot, K. et al. Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res. 2012, 72, 1661–1671.

121

Dudek, A. M.; Martin, S.; Garg, A. D.; Agostinis, P. Immature, semi-mature, and fully mature dendritic cells: Toward a DC-cancer cells interface that augments anticancer immunity. Front. Immunol. 2013, 4, 438.

122

Albert, M. L.; Sauter, B.; Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class Ⅰ-restricted CTLs. Nature 1998, 392, 86–89.

123

Bennett, S. R. M.; Carbone, F. R.; Karamalis, F.; Miller, J. F. A. P.; Heath, W. R. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med. 1997, 186, 65–70.

124

Gilboa, E.; Vieweg, J. Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol. Rev. 2004, 199, 251–263.

125

Gilboa, E. DC-based cancer vaccines. J. Clin. Invest. 2007, 117, 1195–1203.

126

Bachmann, M. F.; Jennings, G. T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010, 10, 787–796.

127

Reddy, S. T.; van der Vlies, A. J.; Simeoni, E.; Angeli, V.; Randolph, G. J.; O'Neill, C. P.; Lee, L. K.; Swartz, M. A.; Hubbell, J. A. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 2007, 25, 1159–1164.

128

Swartz, M. A.; Berk, D. A.; Jain, R. K. Transport in lymphatic capillaries. Ⅰ. Macroscopic measurements using residence time distribution theory. Am. J. Physiol. 1996, 270, H324–H329.

129

Kyte, J. A.; Aamdal, S.; Dueland, S.; Sæbøe-Larsen, S.; Inderberg, E. M.; Madsbu, U. E.; Skovlund, E.; Gaudernack, G.; Kvalheim, G. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. Oncoimmunology 2016, 5, e1232237.

130

Kallen, K. J.; Heidenreich, R.; Schnee, M.; Petsch, B.; Schlake, T.; Thess, A.; Baumhof, P.; Scheel, B.; Koch, S. D.; Fotin-Mleczek, M. A novel, disruptive vaccination technology: Self-adjuvanted RNActive (R) vaccines. Hum. Vaccin. Immunother. 2013, 9, 2263–2276.

131

Sebastian, M.; Papachristofilou, A.; Weiss, C.; Früh, M.; Cathomas, R.; Hilbe, W.; Wehler, T.; Rippin, G.; Koch, S. D.; Scheel, B. et al. Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage Ⅳ non-small cell lung cancer. BMC Cancer 2014, 14, 748.

132

Phua, K. K. L. Towards targeted delivery systems: Ligand conjugation strategies for mrna nanoparticle tumor vaccines. J. Immunol. Res. 2015, 2015, Article ID 680620.

133

Boczkowski, D.; Nair, S. K.; Snyder, D.; Gilboa, E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. 1996, 184, 465–472.

134

Perche, F.; Benvegnu, T.; Berchel, M.; Lebegue, L.; Pichon, C.; Jaffrès, P. A.; Midoux, P. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 2011, 7, 445–453.

135

Zheng, X. F.; Vladau, C.; Zhang, X. S.; Suzuki, M.; Ichim, T. E.; Zhang, Z. X.; Li, M.; Carrier, E.; Garcia, B.; Jevnikar, A. M. et al. A novel in vivo siRNA delivery system specifically targeting dendritic cells and silencing CD40 genes for immunomodulation. Blood 2009, 113, 2646–2654.

136

Singh, A.; Suri, S.; Roy, K. In-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA-DNA carrying microparticles to dendritic cells. Biomaterials 2009, 30, 5187–5200.

137

Sebastian, M.; von Boehmer, L.; Zippelius, A.; Mayer, F.; Reck, M.; Atanackovic, D.; Thomas, M.; Schneller, F.; Stoehlmacher, J.; Goekkurt, E. et al. Messenger RNA vaccination in NSCLC: Findings from a phase Ⅰ/Ⅱa clinical trial. J. Clin. Oncol. 2011, 29, 2584.

138

Weiner, L. M.; Surana, R.; Wang, S. Z. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10, 317–327.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 March 2018
Revised: 09 May 2018
Accepted: 11 May 2018
Published: 31 May 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work is supported by National Research Foundation of Korea (NRF) funded by Ministry of Science, ICT & Future Planning (Pioneer Research Center Program (No. 2014M3C1A3054153), Basic Science Research Program (No. 2015R1A1A1A05027352)) and Ministry of Education (Basic Science Research Program (No. 2017R1D1A1B03028278)).

Return