Journal Home > Volume 11 , Issue 10

Nucleic acid nanotechnology has been developed to be a promising strategy to construct various nano-biomaterials with structural programmability, spatial addressability, and excellent biocompatibility. Self-assembled nucleic acid nanostructures have been employed in a variety of biomedical applications, such as bio-imaging, diagnosis, and therapeutics. In this manuscript, we will review recent progress in the development of multifunctional nucleic acid nanostructures as gene drug delivery vehicles. Therapeutic systems based on RNA interference (RNAi), clustered regularly interspaced short palindromic repeat associated proteins 9 system (CRISPR/Cas9) genome editing, gene expression, and CpG-based immunostimulation will be highlighted. We will also discuss the challenges and future directions of nucleic acid nanotechnology in biomedical research.


menu
Abstract
Full text
Outline
About this article

Multifunctional nucleic acid nanostructures for gene therapies

Show Author's information Jianbing Liu1Zhengang Wang1Shuai Zhao1,2Baoquan Ding1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
University of Chinese Academy of SciencesBeijing100049China

Abstract

Nucleic acid nanotechnology has been developed to be a promising strategy to construct various nano-biomaterials with structural programmability, spatial addressability, and excellent biocompatibility. Self-assembled nucleic acid nanostructures have been employed in a variety of biomedical applications, such as bio-imaging, diagnosis, and therapeutics. In this manuscript, we will review recent progress in the development of multifunctional nucleic acid nanostructures as gene drug delivery vehicles. Therapeutic systems based on RNA interference (RNAi), clustered regularly interspaced short palindromic repeat associated proteins 9 system (CRISPR/Cas9) genome editing, gene expression, and CpG-based immunostimulation will be highlighted. We will also discuss the challenges and future directions of nucleic acid nanotechnology in biomedical research.

Keywords: drug delivery, nucleic acid nanostructure, nucleic acid drug, gene therapy, multifunctional nanomaterials

References(101)

1

Naldini, L. Gene therapy returns to centre stage. Nature 2015, 526, 351–360.

2

Kotterman, M. A.; Schaffer, D. V. Engineering adenoassociated viruses for clinical gene therapy. Nat. Rev. Genet. 2014, 15, 445–451.

3

Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160.

4

Lächelt, U.; Wagner, E. Nucleic acid therapeutics using polyplexes: A journey of 50 years (and beyond). Chem. Rev. 2015, 115, 11043–11078.

5

Dufès, C.; Uchegbu, I. F.; Sch?tzlein, A. G. Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 2005, 57, 2177–2202.

6

Sokolova, V.; Epple, M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem., Int. Ed. 2008, 47, 1382–1395.

7

Kallenbach, N. R.; Ma, R. I.; Seeman, N. C. An immobile nucleic acid junction constructed from oligonucleotides. Nature 1983, 305, 829–831.

8

Seeman, N. C. DNA in a material world. Nature 2003, 421, 427–431.

9

Zheng, J. P.; Birktoft, J. J.; Chen, Y.; Wang, T.; Sha, R. J.; Constantinou, P. E.; Ginell, S. L.; Mao, C. D.; Seeman, N. C. From molecular to macroscopic via the rational design of a self–assembled 3D DNA crystal. Nature 2009, 461, 74–77.

10

Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 2010, 79, 65–87.

11

Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C. Design and self–assembly of two–dimensional DNA crystals. Nature 1998, 394, 539–544.

12

Li, Y. G.; Tseng, Y. D.; Kwon, S. Y.; D'Espaux, L.; Bunch, J. S.; McEuen, P. L.; Luo, D. Controlled assembly of dendrimer–like DNA. Nat. Mater. 2004, 3, 38–42.

13

Goodman, R. P.; Berry, R. M.; Turberfield, A. J. The single–step synthesis of a DNA tetrahedron. Chem. Commun. 2004, 1372–1373.

14

Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

15

Ali, M. M.; Li, F.; Zhang, Z. Q.; Zhang, K. X.; Kang, D. K.; Ankrum, J. A.; Le, X. C.; Zhao, W. A. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014, 43, 3324–3341.

16

Scheffler, M.; Dorenbeck, A.; Jordan, S.; Wüstefeld, M.; von Kiedrowski, G. Self–assembly of trisoligonucleotidyls: The case for nano–acetylene and nano–cyclobutadiene. Angew. Chem., Int. Ed. 1999, 38, 3311–3315.

DOI
17

Lee, J. B.; Roh, Y. H.; Um, S. H.; Funabashi, H.; Cheng, W. L.; Cha, J. J.; Kiatwuthinon, P.; Muller, D. A.; Luo, D. Multifunctional nanoarchitectures from DNA–based ABC monomers. Nat. Nanotechnol. 2009, 4, 430–436.

18

Goodman, R. P.; Schaap, I. A. T.; Tardin, C. F.; Erben, C. M.; Berry, R. M.; Schmidt, C. F.; Turberfield, A. J. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 2005, 310, 1661–1665.

19

Goodman, R. P.; Heilemann, M.; Doose, S.; Erben, C. M.; Kapanidis, A. N.; Turberfield, A. J. Reconfigurable, braced, three–dimensional DNA nanostructures. Nat. Nanotechnol. 2008, 3, 93–96.

20

Kato, T.; Goodman, R. P.; Erben, C. M.; Turberfield, A. J.; Namba, K. High–resolution structural analysis of a DNA nanostructure by cryoEM. Nano Lett. 2009, 9, 2747–2750.

21

Chen, J.; Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 1991, 350, 631–633.

22

Erben, C. M.; Goodman, R. P.; Turberfield, A. J. A selfassembled DNA bipyramid. J. Am. Chem. Soc. 2007, 129, 6992–6993.

23

He, Y.; Su, M.; Fang, P. A.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. D. On the chirality of self–assembled DNA octahedra. Angew. Chem., Int. Ed. 2010, 49, 748–751.

24

He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. D. Hierarchical self–assembly of DNA into symmetric supramolecular polyhedra. Nature 2008, 452, 198–201.

25

Saccà, B.; Meyer, R.; Erkelenz, M.; Kiko, K.; Arndt, A.; Schroeder, H.; Rabe, K. S.; Niemeyer, C. M. Orthogonal protein decoration of DNA origami. Angew. Chem., Int. Ed. 2010, 49, 9378–9383.

26

Tikhomirov, G.; Petersen, P.; Qian, L. L. Fractal assembly of micrometre–scale DNA origami arrays with arbitrary patterns. Nature 2017, 552, 67–71.

27

Lee, J. B.; Peng, S. M.; Yang, D. Y.; Roh, Y. H.; Funabashi, H.; Park, N.; Rice, E. J.; Chen, L. W.; Long, R.; Wu, M. M. et al. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol. 2012, 7, 816–820.

28

Zhu, G. Z.; Hu, R.; Zhao, Z. L.; Chen, Z.; Zhang, X. B.; Tan, W. H. Noncanonical self–assembly of multifunctional DNA nanoflowers for biomedical applications. J. Am. Chem. Soc. 2013, 135, 16438–16445.

29

Hu, R.; Zhang, X. B.; Zhao, Z. L.; Zhu, G. Z.; Chen, T.; Fu, T.; Tan, W. H. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew. Chem., Int. Ed. 2014, 53, 5821–5826.

30

Beyer, S.; Nickels, P.; Simmel, F. C. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Lett. 2005, 5, 719–722.

31

Shchepinov, M. S.; Mir, K. U.; Elder, J. K.; Frank–Kamenetskii, M. D.; Southern, E. M. Oligonucleotide dendrimers: Stable nano–structures. Nucleic Acids Res. 1999, 27, 3035–3041.

32

Gothelf, K. V.; Thomsen, A.; Nielsen, M.; Cló, E.; Brown, R. S. Modular DNA–programmed assembly of linear and branched conjugated nanostructures. J. Am. Chem. Soc. 2004, 126, 1044–1046.

33

Aldaye, F. A.; Sleiman, H. F. Guest–mediated access to a single DNA nanostructure from a library of multiple assemblies. J. Am. Chem. Soc. 2007, 129, 10070–10071.

34

Stepp, B. R.; Gibbs–Davis, J. M.; Koh, D. L. F.; Nguyen, S. T. Cooperative melting in caged dimers of rigid small molecule–DNA hybrids. J. Am. Chem. Soc. 2008, 130, 9628–9629.

35

Zimmermann, J.; Cebulla, M. P. J.; M?nninghoff, S.; von Kiedrowski, G. Self–assembly of a DNA dodecahedron from 20 trisoligonucleotides with C3h linkers. Angew. Chem., Int. Ed. 2008, 47, 3626–3630.

36

Lo, P. K.; Karam, P.; Aldaye, F. A.; McLaughlin, C. K.; Hamblin, G. D.; Cosa, G.; Sleiman, H. F. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem. 2010, 2, 319–328.

37

Bhatia, D.; Mehtab, S.; Krishnan, R.; Indi, S. S.; Basu, A.; Krishnan, Y. Icosahedral DNA nanocapsules by modular assembly. Angew. Chem., Int. Ed. 2009, 48, 4134–4137.

38

Zhao, Z.; Jacovetty, E. L.; Liu, Y.; Yan, H. Encapsulation of gold nanoparticles in a DNA origami cage. Angew. Chem., Int. Ed. 2011, 50, 2041–2044.

39

Shen, X. B.; Song, C.; Wang, J. Y.; Shi, D. W.; Wang, Z. G.; Liu, N.; Ding, B. Q. Rolling up gold nanoparticle–dressed DNA origami into three–dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 2012, 134, 146–149.

40

Shen, X. B.; Asenjo–Garcia, A.; Liu, Q.; Jiang, Q.; García de Abajo, F. J.; Liu, N.; Ding, B. Q. Three–dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 2013, 13, 2128–2133.

41

Zhang, Y.; Chao, J.; Liu, H. J.; Wang, F.; Su, S.; Liu, B.; Zhang, L.; Shi, J. Y.; Wang, L. H.; Huang, W. et al. Transfer of two–dimensional oligonucleotide patterns onto stereocontrolled plasmonic nanostructures through DNAorigami–based nanoimprinting lithography. Angew. Chem., Int. Ed. 2016, 55, 8036–8040.

42

Modi, S.; Swetha, M. G.; Goswami, D.; Gupta, G. D.; Mayor, S.; Krishnan, Y. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 2009, 4, 325–330.

43

Modi, S.; Nizak, C.; Surana, S.; Halder, S.; Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 2013, 8, 459–467.

44

Lu, Z. S.; Wang, Y.; Xu, D.; Pang, L. Aptamer–tagged DNA origami for spatially addressable detection of aflatoxin B1. Chem. Commun. 2017, 53, 941–944.

45

Bhatia, D.; Surana, S.; Chakraborty, S.; Koushika, S. P.; Krishnan, Y. A synthetic icosahedral DNA–based host–cargo complex for functional in vivo imaging. Nat. Commun. 2011, 2, 339.

46

Shen, X. B.; Jiang, Q.; Wang, J. Y.; Dai, L. R.; Zou, G. Z.; Wang, Z. –G.; Chen, W. –Q.; Jiang, W.; Ding, B. Q. Visualization of the intracellular location and stability of DNA origami with a label–free fluorescent probe. Chem. Commun. 2012, 48, 11301–11303.

47

Jiang, D. W.; Sun, Y. H.; Li, J.; Li, Q.; Lv, M.; Zhu, B.; Tian, T.; Cheng, D. F.; Xia, J. Y.; Zhang, L. et al. Multiplearmed tetrahedral DNA nanostructures for tumor–targeting, dual–modality in vivo imaging. ACS Appl. Mater. Interfaces 2016, 8, 4378–4384.

48

Chen, Y. –J.; Groves, B.; Muscat, R. A.; Seelig, G. DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 2015, 10, 748–760.

49

Jiang, Q.; Song, C.; Nangreave, J.; Liu, X. W.; Lin, L.; Qiu, D. L.; Wang, Z. –G.; Zou, G. Z.; Liang, X. J.; Yan, H. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 2012, 134, 13396–13403.

50

Zhao, Y. X.; Shaw, A.; Zeng, X. H.; Benson, E.; Nystr?m, A. M.; H?gberg, B. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 2012, 6, 8684–8691.

51

Liu, J.; Wei, T.; Zhao, J.; Huang, Y. Y.; Deng, H.; Kumar, A.; Wang, C. X.; Liang, Z. C.; Ma, X. W.; Liang, X. –J. Multifunctional aptamer–based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 2016, 91, 44–56.

52

Zhang, Q.; Jiang, Q.; Li, N.; Dai, L. R.; Liu, Q.; Song, L. L.; Wang, J. Y.; Li, Y. Q.; Tian, J.; Ding, B. Q. et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 2014, 8, 6633–6643.

53

Du, Y.; Jiang, Q.; Beziere, N.; Song, L. L.; Zhang, Q.; Peng, D.; Chi, C. W.; Yang, X.; Guo, H. B.; Diot, G. et al. DNA–nanostructure–gold–nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv. Mater. 2016, 28, 10000–10007.

54

Zhuang, X. X.; Ma, X. W.; Xue, X. D.; Jiang, Q.; Song, L. L.; Dai, L. R.; Zhang, C. Q.; Jin, S. B.; Yang, K.; Ding, B. Q. et al. A photosensitizer–loaded DNA origami nanosystem for photodynamic therapy. ACS Nano 2016, 10, 3486–3495.

55

Douglas, S. M.; Bachelet, I.; Church, G. M. A logic–gated nanorobot for targeted transport of molecular payloads. Science 2012, 335, 831–834.

56

Li, S. P.; Jiang, Q.; Liu, S. L.; Zhang, Y. L.; Tian, Y. H.; Song, C.; Wang, J.; Zou, Y. G.; Anderson, G. J.; Han, J. Y. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258–264.

57

Li, J.; Zheng, C.; Cansiz, S.; Wu, C. C.; Xu, J. H.; Cui, C.; Liu, Y.; Hou, W. J.; Wang, Y. Y.; Zhang, L. Q. et al. Selfassembly of DNA nanohydrogels with controllable size and stimuli–responsive property for targeted gene regulation therapy. J. Am. Chem. Soc. 2015, 137, 1412–1415.

58

Park, N.; Um, S. H.; Funabashi, H.; Xu, J. F.; Luo, D. A cell–free protein–producing gel. Nat. Mater. 2009, 8, 432–437.

59

Hartman, M. R.; Yang, D. Y.; Tran, T. N. N.; Lee, K.; Kahn, J. S.; Kiatwuthinon, P.; Yancey, K. G.; Trotsenko, O.; Minko, S.; Luo, D. Thermostable branched DNA nanostructures as modular primers for polymerase chain reaction. Angew. Chem., Int. Ed. 2013, 52, 8699–8702.

60

Mohri, K.; Nishikawa, M.; Takahashi, N.; Shiomi, T.; Matsuoka, N.; Ogawa, K.; Endo, M.; Hidaka, K.; Sugiyama, H.; Takahashi, Y. et al. Design and development of nanosized DNA assemblies in polypod–like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. ACS Nano 2012, 6, 5931–5940.

61

Nishikawa, M.; Mizuno, Y.; Mohri, K.; Matsuoka, N.; Rattanakiat, S.; Takahashi, Y.; Funabashi, H.; Luo, D.; Takakura, Y. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor–bearing mice. Biomaterials 2011, 32, 488–494.

62

Hong, C. A.; Eltoukhy, A. A.; Lee, H.; Langer, R.; Anderson, D. G.; Nam, Y. S. Dendrimeric siRNA for efficient gene silencing. Angew. Chem., Int. Ed. 2015, 54, 6740–6744.

63

Qu, Y. J.; Yang, J. J.; Zhan, P. F.; Liu, S. L.; Zhang, K.; Jiang, Q.; Li, C.; Ding, B. Q. Self–assembled DNA dendrimer nanoparticle for efficient delivery of immunostimulatory CpG motifs. ACS Appl. Mater. Interfaces 2017, 9, 20324–20329.

64

Lee, H.; Lytton–Jean, A. K.; Chen, Y.; Love, K. T.; Park, A. I.; Karagiannis, E. D.; Sehgal, A.; Querbes, W.; Zurenko, C. S.; Jayaraman, M. et al. Molecularly self–assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 2012, 7, 389–393.

65

Ren, K. W.; Liu, Y.; Wu, J.; Zhang, Y.; Zhu, J.; Yang, M.; Ju, H. X. A DNA dual lock–and–key strategy for cell–subtypespecific siRNA delivery. Nat. Commun. 2016, 7, 13580.

66

Bujold, K. E.; Hsu, J. C. C.; Sleiman, H. F. Optimized DNA "nanosuitcases" for encapsulation and conditional release of siRNA. J. Am. Chem. Soc. 2016, 138, 14030–14038.

67

Fakhoury, J. J.; McLaughlin, C. K.; Edwardson, T. W.; Conway, J. W.; Sleiman, H. F. Development and characterization of gene silencing DNA cages. Biomacromolecules 2014, 15, 276–282.

68

Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H. Self–assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011, 5, 8783–8789.

69

Schüller, V. J.; Heidegger, S.; Sandholzer, N.; Nickels, P. C.; Suhartha, N. A.; Endres, S.; Bourquin, C.; Liedl, T. Cellular immunostimulation by CpG–sequence–coated DNA origami structures. ACS Nano 2011, 5, 9696–9702.

70

Han, S.; Kim, H.; Lee, J. B. Library siRNA–generating RNA nanosponges for gene silencing by complementary rolling circle transcription. Sci. Rep. 2017, 7, 10005.

71

Lee, J. B.; Hong, J.; Bonner, D. K.; Poon, Z.; Hammond, P. T. Self–assembled RNA interference microsponges for efficient siRNA delivery. Nat. Mater. 2012, 11, 316–322.

72

Jang, M.; Kim, J. H.; Nam, H. Y.; Kwon, I. C.; Ahn, H. J. Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription. Nat. Commun. 2015, 6, 7930.

73

Ha, J. S.; Lee, J. S.; Jeong, J.; Kim, H.; Byun, J.; Sang, A. K.; Lee, H. J.; Chung, H. S.; Lee, J. B.; Ahn, D. R. PolysgRNA/siRNA ribonucleoprotein nanoparticles for targeted gene disruption. J. Control. Release 2017, 250, 27–35.

74

Sun, W. J.; Ji, W. Y.; Hall, J. M.; Hu, Q. Y.; Wang, C.; Beisel, C. L.; Gu, Z. Self–assembled DNA nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing. Angew. Chem., Int. Ed. 2015, 127, 12197–12201.

75

Ouyang, X. Y.; Li, J.; Liu, H. J.; Zhao, B.; Yan, J.; Ma, Y. Z.; Xiao, S. J.; Song, S. P.; Huang, Q.; Chao, J. et al. Rolling circle amplification–based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. Small 2013, 9, 3082–3087.

76

Hong, C. A.; Lee, S. H.; Kim, J. S.; Park, J. W.; Bae, K. H.; Mok, H.; Park, T. G.; Lee, H. Gene silencing by siRNA microhydrogels via polymeric nanoscale condensation. J. Am. Chem. Soc. 2011, 133, 13914–13917.

77

Liu, J. B.; Wang, R. Y.; Ma, D. J.; Ouyang, D.; Xi, Z. Efficient construction of stable gene nanoparticles through polymerase chain reaction with flexible branched primers for gene delivery. Chem. Commun. 2015, 51, 9208–9211.

78

Ponnuswamy, N.; Bastings, M. M. C.; Nathwani, B.; Ryu, J. H.; Chou, L. Y. T.; Vinther, M.; Li, W. A.; Anastassacos, F. M.; Mooney, D. J.; Shih, W. M. Oligolysine–based coating protects DNA nanostructures from low–salt denaturation and nuclease degradation. Nat. Commun. 2017, 8, 15654.

79

Agarwal, N. P.; Matthies, M.; Gür, F. N.; Osada, K.; Schmidt, T. L. Block copolymer micellization as a protection strategy for DNA origami. Angew. Chem., Int. Ed. 2017, 56, 5460–5464.

80

Stephenson, M. L.; Zamecnik, P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA 1978, 75, 285–288.

81

Monia, B. P.; Johnston, J. F.; Geiger, T.; Muller, M.; Fabbro, D. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C–raf kinase. Nat. Med. 1996, 2, 668–675.

82

Fire, A.; Xu, S. Q.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.; Mello, C. C. Potent and specific genetic interference by double–stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811.

83

Zamore, P. D.; Tuschl, T.; Sharp, P. A.; Bartel, D. P. RNAi: Double–stranded RNA directs the ATP–dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101, 25–33.

84

Elbashir, S. M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21–nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411, 494–498.

85

Brummelkamp, T. R.; Bernards, R.; Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002, 296, 550–553.

86

Lee, S. H.; Chung, B. H.; Park, T. G.; Nam, Y. S.; Mok, H. Small–interfering RNA (siRNA)–based functional microand nanostructures for efficient and selective gene silencing. Acc. Chem. Res. 2012, 45, 1014–1025.

87

Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967–977.

88

Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual–RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821.

89

Cong, L.; Ran, F. A.; Cox, D.; Lin, S. L.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X. B.; Jiang, W. Y.; Marraffini, L. A. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823.

90

Hwang, W. Y.; Fu, Y. F.; Reyon, D.; Maeder, M. L.; Tsai, S. Q.; Sander, J. D.; Peterson, R. T.; Yeh, J. R. J.; Joung, J. K. Efficient genome editing in zebrafish using a CRISPR–Cas system. Nat. Biotechnol. 2013, 31, 227–229.

91

Mali, P.; Yang, L. H.; Esvelt, K. M.; Aach, J.; Guell, M.; DiCarlo, J. E.; Norville, J. E.; Church, G. M. RNA–guided human genome engineering via Cas9. Science 2013, 339, 823–826.

92

Wang, H. Y.; Yang, H.; Shivalila, C. S.; Dawlaty, M. M.; Cheng, A. W.; Zhang, F.; Jaenisch, R. One–step generation of mice carrying mutations in multiple genes by CRISPR/Cas–mediated genome engineering. Cell 2013, 153, 910–918.

93

Niu, Y. Y.; Shen, B.; Cui, Y. Q.; Chen, Y. C.; Wang, J. Y.; Wang, L.; Kang, Y.; Zhao, X. Y.; Si, W.; Li, W. et al. Generation of gene–modified cynomolgus monkey via Cas9/RNA–mediated gene targeting in one–cell embryos. Cell 2014, 156, 836–843.

94

Hsu, P. D.; Lander, E. S.; Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 2014, 157, 1262–1278.

95

Liu, C.; Zhang, L.; Liu, H.; Cheng, K. Delivery strategies of the CRISPR–Cas9 gene–editing system for therapeutic applications. J. Control. Release 2017, 266, 17–26.

96

Wang, X. B.; You, N.; Lan, F. Q.; Fu, P.; Cui, Z.; Pang, X. C.; Liu, M. Y.; Zhao, Q. X. Facile synthesis of size–tunable superparamagnetic/polymeric core/shell nanoparticles by metal–free atom transfer radical polymerization at ambient temperature. RSC Adv. 2017, 7, 7789–7792.

97

Morrison, C. $1–million price tag set for Glybera gene therapy. Nat. Biotechnol. 2015, 33, 217–218.

98

Hoggatt, J. Gene therapy for "bubble boy" disease. Cell 2016, 166, 263.

99

Park, N.; Kahn, J. S.; Rice, E. J.; Hartman, M. R.; Funabashi, H.; Xu, J. F.; Um, S. H.; Luo, D. High–yield cell–free protein production from P–gel. Nat. Protoc. 2009, 4, 1759–1770.

100

Klinman, D. M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 2004, 4, 249–259.

101

Latz, E.; Verma, A.; Visintin, A.; Gong, M.; Sirois, C. M.; Klein, D. C. G.; Monks, B. G.; McKnight, C. J.; Lamphier, M. S.; Duprex, W. P. et al. Ligand–induced conformational changes allosterically activate Toll–like receptor 9. Nat. Immunol. 2007, 8, 772–779.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 March 2018
Revised: 03 May 2018
Accepted: 04 May 2018
Published: 23 May 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21573051, 21708004, and 51761145044), Sience Fund of Creative Research Groups of the National Natural Science Foundation of China (No. 21721002), the National Basic Research Program of China (No. 2016YFA0201601), Beijing Municipal Science & Technology Commission (No. Z161100000116036), Key Research Program of Frontier Sciences, CAS, Grant QYZDB-SSW-SLH029, CAS Interdisciplinary Innovation Team, and K. C. Wong Education Foundation.

Return