Journal Home > Volume 11 , Issue 10

In recent years, messenger RNA (mRNA) vaccines have been intensively studied in the fields of cancer immunotherapy and infectious diseases because of their excellent efficacy and safety profile. Despite significant progress in the rational design of mRNA vaccines and elucidation of their mechanism of action, their widespread application is limited by the development of safe and effective delivery systems that protect them from ubiquitous ribonucleases (RNases), facilitate their entry into cells and subsequent escape from endosomes, and target them to lymphoid organs or particular cells. Some mRNA vaccines based on lipid carriers have entered clinical trials. Vaccines based on polymers, while not as clinically advanced as lipid vectors, show considerable potentials. In this review, we discuss the necessity of formulating mRNA vaccines with delivery systems, and we provide an overview of reported delivery systems.


menu
Abstract
Full text
Outline
About this article

Recent advances in mRNA vaccine delivery

Show Author's information Lu TanXun Sun( )
Key Laboratory of Drug Targeting and Novel Drug Delivery SystemMinistry of EducationWest China School of PharmacySichuan UniversityChengdu610041China

Abstract

In recent years, messenger RNA (mRNA) vaccines have been intensively studied in the fields of cancer immunotherapy and infectious diseases because of their excellent efficacy and safety profile. Despite significant progress in the rational design of mRNA vaccines and elucidation of their mechanism of action, their widespread application is limited by the development of safe and effective delivery systems that protect them from ubiquitous ribonucleases (RNases), facilitate their entry into cells and subsequent escape from endosomes, and target them to lymphoid organs or particular cells. Some mRNA vaccines based on lipid carriers have entered clinical trials. Vaccines based on polymers, while not as clinically advanced as lipid vectors, show considerable potentials. In this review, we discuss the necessity of formulating mRNA vaccines with delivery systems, and we provide an overview of reported delivery systems.

Keywords: delivery systems, messenger RNA (mRNA) vaccines, polymer, lipid

References(130)

1

Iavarone, C.; O'Hagan D, T.; Yu, D.; Delahaye, N. F.; Ulmer, J. B. Mechanism of action of mRNA–based vaccines. Expert Rev. Vaccines 2017, 16, 871–881.

2

Martinon, F.; Krishnan, S.; Lenzen, G.; Magné, R.; Gomard, E.; Guillet, J. G.; Lévy, J. P.; Meulien, P. Induction of virus–specific cytotoxic T lymphocytes in vivo by liposomeentrapped mRNA. Eur. J. Immunol. 1993, 23, 1719–7122.

3

Geall, A. J.; Ulmer, J. B. Introduction to RNA–based vaccines and therapeutics. Expert Rev. Vaccines 2015, 14, 151–152.

4

Rodríguez–Gascón, A.; del Pozo–Rodríguez, A.; Solinís, M. á. Development of nucleic acid vaccines: Use of self–amplifying RNA in lipid nanoparticles. Int. J. Nanomedicine 2014, 9, 1833–1843.

5

Pollard, C.; De Koker, S.; Saelens, X.; Vanham, G.; Grooten, J. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol. Med. 2013, 19, 705–713.

6

Hekele, A.; Bertholet, S.; Archer, J.; Gibson, D. G.; Palladino, G.; Brito, L. A.; Otten, G. R.; Brazzoli, M.; Buccato, S.; Bonci, A. et al. Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2013, 2, e52.

7

Schlake, T.; Thess, A.; Fotin–Mleczek, M.; Kallen, K. J. Developing mRNA–vaccine technologies. RNA Biol. 2012, 9, 1319–1330.

8

Bettinger, T.; Carlisle, R. C.; Read, M. L.; Ogris, M.; Seymour, L. W. Peptide–mediated RNA delivery: A novel approach for enhanced transfection of primary and postmitotic cells. Nucleic Acids Res. 2001, 29, 3882–3891.

9

Sharova, L. V.; Sharov, A. A.; Nedorezov, T.; Piao, Y.; Shaik, N.; Ko, M. S. H. Database for mRNA half–life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 2009, 16, 45–58.

10

Pollard, C.; Rejman, J.; De Haes, W.; Verrier, B.; Van Gulck, E.; Naessens, T.; De Smedt, S.; Bogaert, P.; Grooten, J.; Vanham, G. et al. Type I IFN counteracts the induction of antigen–specific immune responses by lipid–based delivery of mRNA vaccines. Mol. Ther. 2013, 21, 251–259.

11

Weide, B.; Garbe, C.; Rammensee, H. G.; Pascolo, S. Plasmid DNA–and messenger RNA–based anti–cancer vaccination. Immunol. Lett. 2008, 115, 33–42.

12

Sahin, U.; Karikó, K.; Türeci, Ö. mRNA–based therapeutics— Developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780.

13

Granstein, R. D.; Ding, W. H.; Ozawa, H. Induction of anti–tumor immunity with epidermal cells pulsed with tumorderived RNA or intradermal administration of RNA. J. Invest. Dermatol. 2000, 114, 632–636.

14

Kreiter, S.; Selmi, A.; Diken, M.; Koslowski, M.; Britten, C. M.; Huber, C.; Türeci, Ö.; Sahin, U. Intranodal vaccination with naked antigen–encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010, 70, 9031–9040.

15

Probst, J.; Weide, B.; Scheel, B.; Pichler, B. J.; Hoerr, I.; Rammensee, H. G.; Pascolo, S. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid–specific, saturable and ion dependent. Gene Ther. 2007, 14, 1175–1180.

16

Lorenz, C.; Fotin–Mleczek, M.; Roth, G.; Becker, C.; Dam, T. C.; Verdurmen, W. P. R.; Brock, R.; Probst, J.; Schlake, T. Protein expression from exogenous mRNA: Uptake by receptor–mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 2011, 8, 627–636.

17

Peiser, L.; Mukhopadhyay, S.; Gordon, S. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 2002, 14, 123–128.

18

Diken, M.; Kreiter, S.; Selmi, A.; Britten, C. M.; Huber, C.; Türeci, Ö.; Sahin, U. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther. 2011, 18, 702–708.

19

Selmi, A.; Vascotto, F.; Kautz–Neu, K.; Türeci, Ö.; Sahin, U.; von Stebut, E.; Diken, M.; Kreiter, S. Uptake of synthetic naked RNA by skin–resident dendritic cells via macropinocytosis allows antigen expression and induction of T–cell responses in mice. Cancer Immunol. Immunother. 2016, 65, 1075–1083.

20

Wolff, J. A.; Malone, R. W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P. L. Direct gene–transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468.

21

Midoux, P.; Pichon, C. Lipid–based mRNA vaccine delivery systems. Expert Rev. Vaccines 2015, 14, 221–234.

22

Lazzaro, S.; Giovani, C.; Mangiavacchi, S.; Magini, D.; Maione, D.; Baudner, B.; Geall, A. J.; De Gregorio, E.; D'Oro, U.; Buonsanti, C. Cd8 T–cell priming upon mRNA vaccination is restricted to bone–marrow–derived antigenpresenting cells and may involve antigen transfer from myocytes. Immunology 2015, 146, 312–326.

23

Kowalczyk, A.; Doener, F.; Zanzinger, K.; Noth, J.; Baumhof, P.; Fotin–Mleczek, M.; Heidenreich, R. Self–adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine 2016, 34, 3882–3893.

24

Alexopoulou, L.; Holt, A. C.; Medzhitov, R.; Flavell, R. A. Recognition of double–stranded RNA and activation of NF–κB by toll–like receptor 3. Nature 2001, 413, 732–738.

25

Botos, I.; Liu, L.; Wang, Y.; Segal, D. M.; Davies, D. R. The toll–like receptor 3: dsRNA signaling complex. Biochim. Biophys. Acta 2009, 1789, 667–674.

26

Ceppi, M.; Ruggli, N.; Tache, V.; Gerber, H.; McCullough, K. C.; Summerfield, A. Double–stranded secondary structures on mRNA induce type Ⅰ interferon (IFN α/β) production and maturation of mRNA–transfected monocyte–derived dendritic cells. J. Gene Med. 2005, 7, 452–465.

27

Diebold, S. S.; Kaisho, T.; Hemmi, H.; Akira, S.; Reis e Sousa, C. Innate antiviral responses by means of TLR7–mediated recognition of single–stranded RNA. Science 2004, 303, 1529–1531.

28

Diebold, S. S.; Massacrier, C.; Akira, S.; Paturel, C.; Morel, Y.; Reis e Sousa, C. Nucleic acid agonists for toll–like receptor 7 are defined by the presence of uridine ribonucleotides. Eur. J. Immunol. 2006, 36, 3256–3267.

29

Forsbach, A.; Nemorin, J. G.; Montino, C.; Müller, C.; Samulowitz, U.; Vicari, A. P.; Jurk, M.; Mutwiri, G. K.; Krieg, A. M.; Lipford, G. B. et al. Identification of RNA sequence motifs stimulating sequence–specific TLR8–dependent immune responses. J. Immunol. 2008, 180, 3729–3738.

30

Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species–specific recognition of single–stranded RNA via toll–like receptor 7 and 8. Science 2004, 303, 1526–1529.

31

Sabbah, A.; Chang, T. H.; Harnack, R.; Frohlich, V.; Tominaga, K.; Dube, P. H.; Xiang, Y.; Bose, S. Activation of innate immune antiviral responses by Nod2. Nat. Immunol. 2009, 10, 1073–1080.

32

Schlee, M.; Roth, A.; Hornung, V.; Hagmann, C. A.; Wimmenauer, V.; Barchet, W.; Coch, C.; Janke, M.; Mihailovic, A.; Wardle, G. et al. Recognition of 5' triphosphate by RIG–I helicase requires short blunt double–stranded RNA as contained in panhandle of negative–strand virus. Immunity 2009, 31, 25–34.

33

Yoneyama, M.; Kikuchi, M.; Matsumoto, K.; Imaizumi, T.; Miyagishi, M.; Taira, K.; Foy, E.; Loo, Y. M.; Gale, M., Jr.; Akira, S. et al. Shared and unique functions of the DExD/H–box helicases RIG–I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 2005, 175, 2851–2858.

34

Probst, J.; Brechtel, S.; Scheel, B.; Hoerr, I.; Jung, G.; Rammensee, H. G.; Pascolo, S. Characterization of the ribonuclease activity on the skin surface. Genet. Vaccines Ther. 2006, 4, 4.

35

Boudreau, J. E.; Bonehill, A.; Thielemans, K.; Wan, Y. H. Engineering dendritic cells to enhance cancer immunotherapy. Mol. Ther. 2011, 19, 841–853.

36

Jiang, H.; Wang, Q.; Sun, X. Lymph node targeting strategies to improve vaccination efficacy. J. Control. Release 2017, 267, 47–56.

37

Li, M.; Zhao, M. N.; Fu, Y.; Li, Y.; Gong, T.; Zhang, Z. R.; Sun, X. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra–and paracellular pathways. J. Control. Release 2016, 228, 9–19.

38

Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401.

39

Pascolo, S. Vaccination with messenger RNA (mRNA). In Toll–Like Receptors (TLRs) and Innate Immunity. Handbook of Experimental Pharmacology; Bauer, S.; Hartmann, G., Eds.; Springer: Berlin, Heidelberg, 2008; Vol. 183, pp 221–235.

40

Sonenberg, N.; Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell 2009, 136, 731–745.

41

Pasquinelli, A. E.; Dahlberg, J. E.; Lund, E. Reverse 5' caps in RNAs made in vitro by phage RNA polymerases. RNA 1995, 1, 957–967.

42

Stepinski, J.; Waddell, C.; Stolarski, R.; Darzynkiewicz, E.; Rhoads, R. Synthesis and properties of mRNA containing the novel "anti–reverse" cap analogs 7–methyl (3'–O–methyl)gpppg and 7–methyl (3'–deoxy)GpppG. RNA 2001, 7, 1486–1495.

43

Kowalska, J.; Lewdorowicz, M.; Zuberek, J.; Grudzien–Nogalska, E.; Bojarska, E.; Stepinski, J.; Rhoads, R. E.; Darzynkiewicz, E.; Davis, R. E.; Jemielity, J. Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. RNA 2008, 14, 1119–1131.

44

Martin, S. A.; Paoletti, E.; Moss, B. Purification of mRNA guanylyltransferase and mRNA (guanine–7–) methyltransferase from vaccinia virions. J. Biol. Chem. 1975, 250, 9322–9329.

45

Holtkamp, S.; Kreiter, S.; Selmi, A.; Simon, P.; Koslowski, M.; Huber, C.; Türeci, Ö.; Sahin, U. Modification of antigenencoding RNA increases stability, translational efficacy, and T–cell stimulatory capacity of dendritic cells. Blood 2006, 108, 4009–4017.

46

Körner, C. G.; Wahle, E. Poly(A) tail shortening by a mammalian poly(A)–specific 3'–exoribonuclease. J. Biol. Chem. 1997, 272, 10448–1056.

47

Krieg, P. A.; Melton, D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cdnas. Nucleic Acids Res. 1984, 12, 7057–7070.

48

Bossi, L.; Roth, J. R. The influence of codon context on genetic code translation. Nature 1980, 286, 123–127.

49

Zhong, F.; Cao, W. P.; Chan, E.; Tay, P. N.; Cahya, F. F.; Zhang, H. F.; Lu, J. H. Deviation from major codons in the toll–like receptor genes is associated with low toll–like receptor expression. Immunology 2005, 114, 83–93.

50

Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346–353.

51

Karikó, K.; Muramatsu, H.; Welsh, F. A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 2008, 16, 1833–1840.

52

Karikó, K.; Buckstein, M.; Ni, H. P.; Weissman, D. Suppression of RNA recognition by toll–like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005, 23, 165–175.

53

Pardi, N.; Weissman, D. Nucleoside modified mRNA vaccines for infectious diseases. In RNA Vaccines. Methods in Molecular Biology; Kramps, T.; Elbers, K., Eds.; Humana Press: New York, NY, 2017; Vol. 1499, pp 109–121.

54

DeFrancesco, L. The "anti–hype" vaccine. Nat. Biotechnol. 2017, 35, 193–197.

55

Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non–viral vectors for genebased therapy. Nat. Rev. Genet. 2014, 15, 541–555.

56

Vogel, A. B.; Lambert, L.; Kinnear, E.; Busse, D.; Erbar, S.; Reuter, K. C.; Wicke, L.; Perkovic, M.; Beissert, T.; Haas, H. et al. Self–amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 2018, 26, 446–455.

57

Bonehill, A.; Heirman, C.; Tuyaerts, S.; Michiels, A.; Breckpot, K.; Brasseur, F.; Zhang, Y.; Van Der Bruggen, P.; Thielemans, K. Messenger RNA–electroporated dendritic cells presenting MAGE–A3 simultaneously in HLA class Ⅰ and class Ⅱ molecules. J. Immunol. 2004, 172, 6649–6657.

58

Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160.

59

Perri, V.; Pellegrino, M.; Ceccacci, F.; Scipioni, A.; Petrini, S.; Gianchecchi, E.; Lo Russo, A.; De Santis, S.; Mancini, G.; Fierabracci, A. Use of short interfering RNA delivered by cationic liposomes to enable efficient down–regulation of PTPN22 gene in human T lymphocytes. PLoS One 2017, 12, e0175784.

60

Zhi, D. F.; Zhang, S. B.; Cui, S. H.; Zhao, Y.; Wang, Y. H.; Zhao, D. F. The headgroup evolution of cationic lipids for gene delivery. Bioconjugate Chem. 2013, 24, 487–519.

61

Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 2009, 109, 259–302.

62

Grabbe, S.; Haas, H.; Diken, M.; Kranz, L. M.; Langguth, P.; Sahin, U. Translating nanoparticulate–personalized cancer vaccines into clinical applications: Case study with RNAlipoplexes for the treatment of melanoma. Nanomedicine 2016, 11, 2723–2734.

63

Hess, P. R.; Boczkowski, D.; Nair, S. K.; Snyder, D.; Gilboa, E. Vaccination with mRNAs encoding tumor–associated antigens and granulocyte–macrophage colony–stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol. Immun. 2006, 55, 672–683.

64

Lv, H. T.; Zhang, S. B.; Wang, B.; Cui, S. H.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 2006, 114, 100–109.

65

Hajj, K. A.; Whitehead, K. A. Tools for translation: Non–viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 17056.

66

Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.

67

Reichmuth, A. M.; Oberli, M. A.; Jeklenec, A.; Langer, R.; Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 2016, 7, 319–334.

68

Walsh, C. L.; Nguyen, J.; Tiffany, M. R.; Szoka, F. C. Synthesis, characterization, and evaluation of ionizable lysine–based lipids for siRNA delivery. Bioconjugate Chem. 2013, 24, 36–43.

69

Granot, Y.; Peer, D. Delivering the right message: Challenges and opportunities in lipid nanoparticles–mediated modified mRNA therapeutics—An innate immune system standpoint. Semin. Immunol. 2017, 34, 68–77.

70

Chen, S.; Tam, Y. Y. C.; Lin, P. J. C.; Sung, M. M. H.; Tam, Y. K.; Cullis, P. R. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J. Control Release 2016, 235, 236–244.

71

Jayaraman, M.; Ansell, S. M.; Mui, B. L.; Tam, Y. K.; Chen, J. X.; Du, X. Y.; Butler, D.; Eltepu, L.; Matsuda, S.; Narayanannair, J. K. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem., Int. Ed. 2012, 51, 8529–8533.

72

Maier, M. A.; Jayaraman, M.; Matsuda, S.; Liu, J.; Barros, S.; Querbes, W.; Tam, Y. K.; Ansell, S. M.; Kumar, V.; Qin, J. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 2013, 21, 1570–1578.

73

Pardi, N.; Hogan, M. J.; Pelc, R. S.; Muramatsu, H.; Andersen, H.; DeMaso, C. R.; Dowd, K. A.; Sutherland, L. L.; Scearce, R. M.; Parks, R. et al. Zika virus protection by a single low–dose nucleoside–modified mRNA vaccination. Nature 2017, 543, 248–251.

74

Richner, J. M.; Himansu, S.; Dowd, K. A.; Butler, S. L.; Salazar, V.; Fox, J. M.; Julander, J. G.; Tang, W. W.; Shresta, S.; Pierson, T. C. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 2017, 168, 1114–1125. e10.

75

Oberli, M. A.; Reichmuth, A. M.; Dorkin, J. R.; Mitchell, M. J.; Fenton, O. S.; Jaklenec, A.; Anderson, D. G.; Langer, R.; Blankschtein, D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017, 17, 1326–1335.

76

Gary, D. J.; Lee, H.; Sharma, R.; Lee, J. S.; Kim, Y.; Cui, Z. Y.; Jia, D.; Bowman, V. D.; Chipman, P. R.; Wan, L. et al. Influence of nano–carrier architecture on in vitro siRNA delivery performance and in vivo biodistribution: Polyplexes vs micelleplexes. ACS Nano 2011, 5, 3493–3505.

77

Wang, W.; Li, W.; Ma, N.; Steinhoff, G. Non–viral gene delivery methods. Curr. Pharm. Biotechnol. 2013, 14, 46–60.

78

Elouahabi, A.; Ruysschaert, J. M. Formation and intracellular trafficking of lipoplexes and polyplexes. Mol. Ther. 2005, 11, 336–347.

79

Lungwitz, U.; Breunig, M.; Blunk, T.; Göpferich, A. Polyethylenimine–based non–viral gene delivery systems. Eur. J. Pharm. Biopharm. 2005, 60, 247–266.

80

Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301.

81

Démoulins, T.; Milona, P.; Englezou, P. C.; Ebensen, T.; Schulze, K.; Suter, R.; Pichon, C.; Midoux, P.; Guzmán, C. A.; Ruggli, N. et al. Polyethylenimine–based polyplex delivery of self–replicating RNA vaccines. Nanomedicine 2016, 12, 711–722.

82

Li, M.; Li, Y.; Peng, K.; Wang, Y.; Gong, T.; Zhang, Z. R.; He, Q.; Sun, X. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses. Acta Biomater. 2017, 64, 237–248.

83

üzgün, S.; Nica, G.; Pfeifer, C.; Bosinco, M.; Michaelis, K.; Lutz, J. F.; Schneider, M.; Rosenecker, J.; Rudolph, C. Pegylation improves nanoparticle formation and transfection efficiency of messenger RNA. Pharm. Res. 2011, 28, 2223–2232.

84

McKinlay, C. J.; Vargas, J. R.; Blake, T. R.; Hardy, J. W.; Kanada, M.; Contag, C. H.; Wender, P. A.; Waymouth, R. M. Charge–altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl. Acad. Sci. USA 2017, 114, E448–E456.

85

Jarzębińska, A.; Pasewald, T.; Lambrecht, J.; Mykhaylyk, O.; Kümmerling, L.; Beck, P.; Hasenpusch, G.; Rudolph, C.; Plank, C.; Dohmen, C. et al. A single methylene group in oligoalkylamine–based cationic polymers and lipids promotes enhanced mRNA delivery. Angew. Chem., Int. Ed. 2016, 55, 9591–9595.

86

Almeida, M.; Magãlhes, M.; Veiga, F.; Figueiras, A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. J. Polym. Res. 2018, 25, 31.

87

Jhaveri, A. M.; Torchilin, V. P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol. 2014, 5, 77.

88

Zhao, M. N.; Li, M.; Zhang, Z. R.; Gong, T.; Sun, X. Induction of HIV–1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv. 2016, 23, 2596–2607.

89

Matsui, A.; Uchida, S.; Ishii, T.; Itaka, K.; Kataoka, K. Messenger RNA–based therapeutics for the treatment of apoptosis–associated diseases. Sci. Rep. 2015, 5, 15810.

90

Aini, H.; Itaka, K.; Fujisawa, A.; Uchida, H.; Uchida, S.; Fukushima, S.; Kataoka, K.; Saito, T.; Chung, U. I.; Ohba, S. Messenger RNA delivery of a cartilage–anabolic transcription factor as a disease–modifying strategy for osteoarthritis treatment. Sci. Rep. 2016, 6, 18743.

91

Uchida, S.; Kinoh, H.; Ishii, T.; Matsui, A.; Tockary, T. A.; Takeda, K. M.; Uchida, H.; Osada, K.; Itaka, K.; Kataoka, K. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 2016, 82, 221–228.

92

Baba, M.; Itaka, K.; Kondo, K.; Yamasoba, T.; Kataoka, K. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J. Control. Release 2015, 201, 41–48.

93

Guan, S.; Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector–based delivery systems. Gene Ther. 2017, 24, 133–143.

94

Mockey, M.; Bourseau, E.; Chandrashekhar, V.; Chaudhuri, A.; Lafosse, S.; Le Cam, E.; Quesniaux, V. F. J.; Ryffel, B.; Pichon, C.; Midoux, P. mRNA–based cancer vaccine: Prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther. 2007, 14, 802–814.

95

Perche, F.; Benvegnu, T.; Berchel, M.; Lebegue, L.; Pichon, C.; Jaffres, P. A.; Midoux, P. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 2011, 7, 445–453.

96

Persano, S.; Guevara, M. L.; Li, Z. Q.; Mai, J. H.; Ferrari, M.; Pompa, P. P.; Shen, H. F. Lipopolyplex potentiates anti–tumor immunity of mRNA–based vaccination. Biomaterials 2017, 125, 81–89.

97

Rezaee, M.; Oskuee, R. K.; Nassirli, H.; Malaekeh–Nikouei, B. Progress in the development of lipopolyplexes as efficient non–viral gene delivery systems. J. Control. Release 2016, 236, 1–14.

98

Singh, R. S.; Gonçalves, C.; Sandrin, P.; Pichon, C.; Midoux, P.; Chaudhuri, A. On the gene delivery efficacies of pH–sensitive cationic lipids via endosomal protonation: A chemical biology investigation. Chem. Biol. 2004, 11, 713–723.

99

Kumar, V. V.; Pichon, C.; Refregiers, M.; Guerin, B.; Midoux, P.; Chaudhuri, A. Single histidine residue in head–group region is sufficient to impart remarkable gene transfection properties to cationic lipids: Evidence for histidine–mediated membrane fusion at acidic pH. Gene Ther. 2003, 10, 1206–1215.

100

Pichon, C.; Gonçalves, C.; Midoux, P. Histidine–rich peptides and polymers for nucleic acids delivery. Adv. Drug Deliv. Rev. 2001, 53, 75–94.

101

Anderson, D. G.; Lynn, D. M.; Langer, R. Semi–automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem., Int. Ed. 2003, 42, 3153–3158.

102

Zugates, G. T.; Peng, W. D.; Zumbuehl, A.; Jhunjhunwala, S.; Huang, Y. H.; Langer, R.; Sawicki, J. A.; Anderson, D. G. Rapid optimization of gene delivery by parallel endmodification of poly(β–amino ester)s. Mol. Ther. 2007, 15, 1306–1312.

103

Brito, L. A.; Chan, M.; Shaw, C. A.; Hekele, A.; Carsillo, T.; Schaefer, M.; Archer, J.; Seubert, A.; Otten, G. R.; Beard, C. W. et al. A cationic nanoemulsion for the delivery of next–generation RNA vaccines. Mol. Ther. 2014, 22, 2118–2129.

104

Ott, G.; Barchfeld, G. L.; Chernoff, D.; Radhakrishnan, R.; van Hoogevest, P.; Van Nest, G. MF59 design and evaluation of a safe and potent adjuvant for human vaccines. In Vaccine Design. Pharmaceutical Biotechnology; Powell, M. F.; Newman, M. J., Eds.; Springer: Boston, MA, 1995; Vol. 6, pp 277–296.

105

Choi, W. J.; Kim, J. K.; Choi, S. H.; Park, J. S.; Ahn, W. S.; Kim, C. K. Low toxicity of cationic lipid–based emulsion for gene transfer. Biomaterials 2004, 25, 5893–5903.

106

Forghanifard, M. M.; Gholamin, M.; Moaven, O.; Farshchian, M.; Ghahraman, M.; Aledavood, A.; Abbaszadegan, M. R. Neoantigen in esophageal squamous cell carcinoma for dendritic cell–based cancer vaccine development. Med. Oncol. 2014, 31, 191.

107

Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279.

108

Kreiter, S.; Diken, M.; Selmi, A.; Türeci, Ö.; Sahin, U. Tumor vaccination using messenger RNA: Prospects of a future therapy. Curr. Opin. Immunol. 2011, 23, 399–406.

109

Kyte, J. A.; Aamdal, S.; Dueland, S.; Sæbøe–Larsen–Larsen, S.; Inderberg, E. M.; Madsbu, U. E.; Skovlund, E.; Gaudernack, G.; Kvalheim, G. Immune response and long–term clinical outcome in advanced melanoma patients vaccinated with tumor–mRNA–transfected dendritic cells. Oncoimmunology 2016, 5, e1232237.

110

Kaczmarek, J. C.; Kowalski, P. S.; Anderson, D. G. Advances in the delivery of RNA therapeutics: From concept to clinical reality. Genome Med. 2017, 9, 60.

111

Carralot, J. P.; Probst, J.; Hoerr, I.; Scheel, B.; Teufel, R.; Jung, G.; Rammensee, H. G.; Pascolo, S. Polarization of immunity induced by direct injection of naked sequencestabilized mRNA vaccines. Cell. Mol. Life Sci. 2004, 61, 2418–2424.

112

Fotin–Mleczek, M.; Duchardt, K. M.; Lorenz, C.; Pfeiffer, R.; Ojkić–Zrna, S.; Probst, J.; Kallen, K. J. Messenger RNA–based vaccines with dual activity induce balanced TLR–7 dependent adaptive immune responses and provide antitumor activity. J. Immunother. 2011, 34, 1–15.

113

Fotin–Mleczek, M.; Zanzinger, K.; Heidenreich, R.; Lorenz, C.; Thess, A.; Duchardt, K. M.; Kallen, K. J. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J. Gene Med. 2012, 14, 428–439.

114

Van Lint, S.; Goyvaerts, C.; Maenhout, S.; Goethals, L.; Disy, A.; Benteyn, D.; Pen, J.; Bonehill, A.; Heirman, C.; Breckpot, K. et al. Preclinical evaluation of TriMix and antigen mRNA–based antitumor therapy. Cancer Res. 2012, 72, 1661–1671.

115

Fotin–Mleczek, M.; Zanzinger, K.; Heidenreich, R.; Lorenz, C.; Kowalczyk, A.; Kallen, K. J.; Huber, S. M. mRNA–based vaccines synergize with radiation therapy to eradicate established tumors. Radiat. Oncol. 2014, 9, 180.

116

Motzer, R. J.; Escudier, B.; Bukowski, R.; Rini, B. I.; Hutson, T. E.; Barrios, C. H.; Lin, X.; Fly, K.; Matczak, E.; Gore, M. E. Prognostic factors for survival in 1059 patients treated with sunitinib for metastatic renal cell carcinoma. Br. J. Cancer 2013, 108, 2470–2477.

117

Wang, Y. H.; Zhang, L.; Xu, Z. H.; Miao, L.; Huang, L. mRNA vaccine with antigen–specific checkpoint blockade induces an enhanced immune response against established melanoma. Mol. Ther. 2018, 26, 420–434.

118

Liu, L.; Wang, Y. H.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination immunotherapy of MUC1 mRNA nano–vaccine and CTLA–4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther. 2018, 26, 45–55.

119

Wilgenhof, S.; Corthals, J.; Heirman, C.; van Baren, N.; Lucas, S.; Kvistborg, P.; Thielemans, K.; Neyns, B. Phase Ⅱ study of autologous monocyte–derived mRNA electroporated dendritic cells (TriMixDC–MEL) plus ipilimumab in patients with pretreated advanced melanoma. J. Clin. Oncol. 2016, 34, 1330–1338.

120

Diken, M.; Kreiter, S.; Kloke, B.; Sahin, U. Current developments in actively personalized cancer vaccination with a focus on RNA as the drug format. Prog. Tumor Res. 2015, 42, 44–54.

121

Boisguérin, V.; Castle, J. C.; Loewer, M.; Diekmann, J.; Mueller, F.; Britten, C. M.; Kreiter, S.; Türeci, Ö.; Sahin, U. Translation of genomics–guided RNA–based personalised cancer vaccines: Towards the bedside. Br. J. Cancer 2014, 111, 1469–1475.

122

Chahal, J. S.; Khan, O. F.; Cooper, C. L.; McPartlan, J. S.; Tsosie, J. K.; Tilley, L. D.; Sidik, S. M.; Lourido, S.; Langer, R.; Bavari, S. et al. Dendrimer–RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl. Acad. Sci. USA 2016, 113, E4133–E4142.

123

Chen, Z. Y.; Wang, W. J.; Zhou, H. L.; Suguitan, A. L., Jr.; Shambaugh, C.; Kim, L.; Zhao, J.; Kemble, G.; Jin, H. Generation of live attenuated novel influenza virus a/california/7/09 (H1N1) vaccines with high yield in embryonated chicken eggs. J. Virol. 2010, 84, 44–51.

124

Wurm, F. M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004, 22, 1393–1398.

125

Allard, S. D.; De Keersmaecker, B.; de Goede, A. L.; Verschuren, E. J.; Koetsveld, J.; Reedijk, M. L.; Wylock, C.; De Bel, A. V.; Vandeloo, J.; Pistoor, F. et al. A phase I/IIa immunotherapy trial of HIV–1–infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin. Immunol. 2012, 142, 252–268.

126

Deering, R. P.; Kommareddy, S.; Ulmer, J. B.; Brito, L. A.; Geall, A. J. Nucleic acid vaccines: Prospects for non–viral delivery of mRNA vaccines. Expert Opin. Drug Deliv. 2014, 11, 885–899.

127

Brito, L. A.; Kommareddy, S.; Maione, D.; Uematsu, Y.; Giovani, C.; Berlanda Scorza, F.; Otten, G. R.; Yu, D.; Mandl, C. W.; Mason, P. W. et al. Self–amplifying mRNA vaccines. Adv. Genet 2015, 89, 179–233.

128

Démoulins, T.; Ebensen, T.; Schulze, K.; Englezou, P. C.; Pelliccia, M.; Guzmán, C. A.; Ruggli, N.; McCullough, K. C. Self–replicating RNA vaccine functionality modulated by fine–tuning of polyplex delivery vehicle structure. J. Control. Release 2017, 266, 256–271.

129

Fischer, D.; Bieber, T.; Li, Y. X.; Elsässer, H. P.; Kissel, T. A novel non–viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 1999, 16, 1273–1279.

130

Xu, Y. H.; Hui, S. W.; Frederik, P.; Szoka, F. C. Physicochemical characterization and purification of cationic lipoplexes. Biophys. J. 1999, 77, 341–353.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 March 2018
Revised: 30 April 2018
Accepted: 04 May 2018
Published: 26 May 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 81673362 and 81690261).

Return