Journal Home > Volume 11 , Issue 11

Two-dimensional (2D) materials have received significant attention due to their unique physical properties and potential applications in electronics and optoelectronics. Recent studies have demonstrated that exfoliated PdSe2, a layered transition metal dichalcogenide (TMD), exhibits ambipolar field-effect transistor (FET) behavior with notable performance and good air stability, and thus serves as an emerging candidate for 2D electronics. Here, we report the growth of bilayer PdSe2 on a graphene-SiC(0001) substrate by molecular beam epitaxy (MBE). A bandgap of 1.15 ± 0.07 eV was revealed by scanning tunneling spectroscopy (STS). Moreover, a bandgap shift of 0.2 eV was observed in PdSe2 layers grown on monolayer graphene as compared to those grown on bilayer graphene. The realization of nanoscale electronic junctions with atomically sharp boundaries in 2D PdSe2 implies the possibility of tuning its electronic or optoelectronic properties. In addition, on top of the PdSe2 bilayers, PdSe2 nanoribbons and stacks of nanoribbons with a fixed orientation have been fabricated. The bottom-up fabrication of low-dimensional PdSe2 structures is expected to enable substantial exploration of its potential applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Construction of bilayer PdSe2 on epitaxial graphene

Show Author's information En Li§Dongfei Wang§Peng FanRuizi ZhangYu-Yang ZhangGeng LiJinhai MaoYeliang WangXiao Lin( )Shixuan DuHong-Jun Gao( )
Institute of Physics & University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China

§ En Li, Dongfei Wang and Peng Fan contributed equally to this work.

Abstract

Two-dimensional (2D) materials have received significant attention due to their unique physical properties and potential applications in electronics and optoelectronics. Recent studies have demonstrated that exfoliated PdSe2, a layered transition metal dichalcogenide (TMD), exhibits ambipolar field-effect transistor (FET) behavior with notable performance and good air stability, and thus serves as an emerging candidate for 2D electronics. Here, we report the growth of bilayer PdSe2 on a graphene-SiC(0001) substrate by molecular beam epitaxy (MBE). A bandgap of 1.15 ± 0.07 eV was revealed by scanning tunneling spectroscopy (STS). Moreover, a bandgap shift of 0.2 eV was observed in PdSe2 layers grown on monolayer graphene as compared to those grown on bilayer graphene. The realization of nanoscale electronic junctions with atomically sharp boundaries in 2D PdSe2 implies the possibility of tuning its electronic or optoelectronic properties. In addition, on top of the PdSe2 bilayers, PdSe2 nanoribbons and stacks of nanoribbons with a fixed orientation have been fabricated. The bottom-up fabrication of low-dimensional PdSe2 structures is expected to enable substantial exploration of its potential applications.

Keywords: two-dimensional materials, transition-metal dichalcogenides, PdSe2, scanning tunneling microscopy/spectroscopy, semiconducting bandgap, nanoribbon

References(37)

1

Jariwala, D.; Davoyan, A. R.; Wong, J.; Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: Promise and outlook. ACS Photonics 2017, 4, 2962-2970.

2

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

3

Pan, Y.; Zhang, L. Z.; Huang, L.; Li, L. F.; Meng, L.; Gao, M.; Huan, Q.; Lin, X.; Wang, Y. L.; Du, S. X. et al. Construction of 2D atomic crystals on transition metal surfaces: Graphene, silicene, and hafnene. Small 2014, 10, 2215-2225.

4

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. -J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

5

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

6

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343-350.

7

Liu, G. -B.; Xiao, D.; Yao, Y. G.; Xu, X. D.; Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643-2663.

8

Zhang, Y.; Chang, T. -R.; Zhou, B.; Cui, Y. -T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111-115.

9

Zhang, Y.; Ugeda, M. M.; Jin, C. H.; Shi, S. -F.; Bradley, A. J.; Martín-Recio, A.; Ryu, H.; Kim, J.; Tang, S. J.; Kim, Y. et al. Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films. Nano Lett. 2016, 16, 2485-2491.

10

Ugeda, M. M.; Bradley, A. J.; Shi, S. -F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. -K.; Hussain, Z.; Shen, Z. -X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091-1095.

11

Wang, Y. L.; Li, L. F.; Yao, W.; Song, S. R.; Sun, J. T.; Pan, J. B.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y. Q. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013-4018.

12

Kolobov, A. V.; Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides; Springer: Switzerland, 2016.

DOI
13

Soulard, C.; Rocquefelte, X.; Petit, P. -E.; Evain, M.; Jobic, S.; Itié, J. -P.; Munsch, P.; Koo, H. -J.; Whangbo, M. -H. Experimental and theoretical investigation on the relative stability of the PdS2- and pyrite-type structures of PdSe2. Inorg. Chem. 2004, 43, 1943-1949.

14

Chow, W. L.; Yu, P.; Liu, F. C.; Hong, J. H.; Wang, X. L.; Zeng, Q. S.; Hsu, C. H.; Zhu, C.; Zhou, J. D.; Wang, X. W. et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 2017, 29, 1602969.

15

Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z.; Rouleau, C. M. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090-14097.

16

Zhang, S. H.; Zhou, J.; Wang, Q.; Chen, X. S.; Kawazoe, Y.; Jena, P. Penta-graphene: A new carbon allotrope. Proc. Natl. Acad. Sci. USA 2015, 112, 2372-2377.

17

Ma, Y. D.; Kou, L. Z.; Li, X.; Dai, Y.; Heine, T. Room temperature quantum spin Hall states in two-dimensional crystals composed of pentagonal rings and their quantum wells. NPG Asia Mater. 2016, 8, e264.

18

Zhang, R. -W.; Liu, C. -C.; Ma, D. -S.; Yao, Y. -G. From node-line semimetals to large-gap quantum spin Hall states in a family of pentagonal group-IVA chalcogenide. Phys. Rev. B 2018, 97, 125312.

19

ElGhazali, M. A.; Naumov, P. G.; Mirhosseini, H.; Süß, V.; Müchler, L.; Schnelle, W.; Felser, C.; Medvedev, S. A. Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2. Phys. Rev. B 2017, 96, 060509.

20

Sun, J. F.; Shi, H. L.; Siegrist, T.; Singh, D. J. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 2015, 107, 153902.

21

Lin, J. H.; Zuluaga, S.; Yu, P.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 2017, 119, 016101.

22

Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739-16744.

23

Kim, J.; Yun, W. S.; Lee, J. D. Optical absorption of armchair MoS2 nanoribbons: Enhanced correlation effects in the reduced dimension. J. Phys. Chem. C 2015, 119, 13901-13906.

24

An, X. -T.; Xiao, J.; Tu, M. W. -Y.; Yu, H. Y.; Fal'ko, V. I.; Yao, W. Realization of valley and spin pumps by scattering at nonmagnetic disorders. Phys. Rev. Lett. 2017, 118, 096602.

25

Zhang, Z. W.; Xie, Y. E.; Peng, Q.; Chen, Y. P. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons. Sci. Rep. 2016, 6, 21639.

26

Cheng, F.; Xu, H.; Xu, W. T.; Zhou, P. J.; Martin, J.; Loh, K. P. Controlled growth of 1D MoSe2 nanoribbons with spatially modulated edge states. Nano Lett. 2017, 17, 1116-1120.

27

Chen, Y. X.; Cui, P.; Ren, X. B.; Zhang, C. D.; Jin, C. H.; Zhang, Z. Y.; Shih, C. -K. Fabrication of MoSe2 nanoribbons via an unusual morphological phase transition. Nat. Commun. 2017, 8, 15135.

28

Zhang, C. D.; Lian, J. C.; Yi, W.; Jiang, Y. H.; Liu, L. W.; Hu, H.; Xiao, W. D.; Du, S. X.; Sun, L. L.; Gao, H. -J. Surface structures of black phosphorus investigated with scanning tunneling microscopy. J. Phys. Chem. C 2009, 113, 18823-18826.

29

Özçelik, V. O.; Azadani, J. G.; Yang, C.; Koester, S. J.; Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 2016, 94, 035125.

30

Lauffer, P.; Emtsev, K. V.; Graupner, R.; Seyller, T.; Ley, L.; Reshanov, S. A.; Weber, H. B. Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2008, 77, 155426.

31

Wang, Q. Y.; Zhang, W. H.; Wang, L. L.; He, K.; Ma, X. C.; Xue, Q. K. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates. J. Phys. : Condens. Matter 2013, 25, 095002.

32

Riedl, C.; Starke, U.; Bernhardt, J.; Franke, M.; Heinz, K. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 2007, 76, 245406.

33

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

34

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

35

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

36

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

37

Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805-813.

File
12274_2018_2090_MOESM1_ESM.pdf (999.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 March 2018
Revised: 25 April 2018
Accepted: 07 May 2018
Published: 24 May 2018
Issue date: November 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 61390501, 61622116 and 61471337), the Chinese Academy of Sciences (Nos. XDPB0601 and XDPB0801) and the CAS Pioneer Hundred Talents Program. Y. Y. Z. would also thank Beijing Nova Program (No. Z181100006218023). A portion of the research was performed in CAS Key Laboratory of Vacuum Physics.

Return