Journal Home > Volume 11 , Issue 9

To facilitate potential applications of tungsten diselenide (WSe2) in electronics, controllable doping is of great importance. As an industrially compatible technology, plasma treatment has been used to dope two-dimensional (2D) materials. However, owing to the strong etching effect in transition metal dichalcogenides (TMDCs), it is difficult to controllably dope 2D WSe2 crystals by plasma. Herein, we develop a moderate ammonia plasma treatment method to prepare nitrogen-doped WSe2 with controlled nitrogen content. Interestingly, Raman, photoluminescence, X-ray photoelectron spectroscopy, and electrical measurements reveal abnormal n-doping behavior of nitrogen-doped WSe2, which is attributed to selenium anion vacancy introduced by hydrogen species in ammonia plasma. Nitrogen-doped WSe2 with abnormal n-doping behavior has potential applications in future TMDCs-based electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Abnormal n-type doping effect in nitrogen-doped tungsten diselenide prepared by moderate ammonia plasma treatment

Show Author's information Zhepeng JinZhi CaiXiaosong ChenDacheng Wei( )
State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200433China

Abstract

To facilitate potential applications of tungsten diselenide (WSe2) in electronics, controllable doping is of great importance. As an industrially compatible technology, plasma treatment has been used to dope two-dimensional (2D) materials. However, owing to the strong etching effect in transition metal dichalcogenides (TMDCs), it is difficult to controllably dope 2D WSe2 crystals by plasma. Herein, we develop a moderate ammonia plasma treatment method to prepare nitrogen-doped WSe2 with controlled nitrogen content. Interestingly, Raman, photoluminescence, X-ray photoelectron spectroscopy, and electrical measurements reveal abnormal n-doping behavior of nitrogen-doped WSe2, which is attributed to selenium anion vacancy introduced by hydrogen species in ammonia plasma. Nitrogen-doped WSe2 with abnormal n-doping behavior has potential applications in future TMDCs-based electronics.

Keywords: nitrogen-doped, tungsten diselenide, n-type doping, ammonia plasma, anion vacancy

References(36)

1

Zhang Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725-728.

2

Kim, K.; Larentis, S.; Fallahazad, B.; Lee, K.; Xue, J. M.; Dillen, D. C.; Corbet, C. M.; Tutuc, E. Band alignment in WSe2-graphene heterostructures. ACS Nano 2015, 9, 4527-4532.

3

Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53-60.

4

Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015, 15, 709-713.

5

Salehzadeh, O.; Tran, N. H.; Liu, X.; Shih, I.; Mi, Z. Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS2 light-emitting devices. Nano Lett. 2014, 14, 4125-4130.

6

Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42-46.

7

Chen, K. X.; Luo, Z. Y.; Mo, D. C.; Lyu, S. S. WSe2 nanoribbons: New high-performance thermoelectric materials. Phys. Chem. Chem. Phys. 2016, 18, 16337-16344.

8

Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824-4831.

9

Duclaux, L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon 2002, 40, 1751-1764.

10

Sim, D. M.; Kim, M.; Yim, S.; Choi, M. J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 2015, 9, 12115-12123.

11

Lei, S. D.; Wang, X. F.; Li, B.; Kang, J. H.; He, Y. M.; George, A.; Ge, L. H.; Gong, Y. J.; Dong, P.; Jin, Z. H. et al. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. Nat. Nanotechnol. 2016, 11, 465-471.

12

Fang, H.; Tosun, M.; Srol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991-1995.

13

Zhao, P. D.; Kiriya, D.; Zcatl, A.; Zhang, C. X.; Tosun, M.; Liu, Y. S.; Hettick, M.; Kang, J. S.; McDonnell, S.; Santosh, K. C. et al. Air stable p-doping of WSe2 by covalent functionalization. ACS Nano 2014, 8, 10808-10814.

14

Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788-3792.

15

Lin, Y. C.; Lin, C. Y.; Chiu, P. W. Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 2010, 96, 133110.

16

Azcatl, A.; Qin, X. Y.; Prakash, A.; Zhang, C. X.; Cheng, L. X.; Wang, Q. X.; Lu, N.; Kim, M. J.; Kim, J.; Cho, K. et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 2016, 16, 5437-5443.

17

Chen, M. K.; Nam, H.; Wi, S. J.; Ji, L.; Ren, X.; Bian, L. F.; Lu, S. L.; Liang, X. G. Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Appl. Phys. Lett. 2013, 103, 142110.

18

Liu, Y. L.; Nan, H. Y.; Wu, X.; Pan, W.; Wang, W. H.; Bai, J.; Zhao, W. W.; Sun, L. T.; Wang, X. R.; Ni, Z. H. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 2013, 7, 4202-4209.

19

Dolui, K.; Rungger, I.; Das Pemmaraju, C.; Sanvito, S. Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 2013, 88, 075420.

20

Liu, B. L.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y. Q.; Zhou, C. W. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 2015, 9, 6119-6127.

21

Narushima, K.; Yamashita, N.; Fukuoka, M.; Inagaki, N.; Isono, Y.; Islam, M. R. Surface modifications of polyester films by ammonia plasma. Jpn. J. Appl. Phys. 2007, 46, 4238.

22

Milled, G. P.; Baird, J. K. Radio frequency plasma decomposition of ammonia: A comparison with radiation chemistry using the G value. J. Phys. Chem. 1993, 97, 10984-10988.

23

Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9, 7383-7391.

24

Tosun, M.; Chan, L.; Amani, M.; Roy, T.; Ahn, G. H.; Taheri, P.; Carraro, C.; Ager, J. W.; Maboudian, R.; Javey, A. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 2016, 10, 6853-6860.

25

Xie, L. M.; Jiao, L. Y.; Dai, H. J. Selective etching of graphene edges by hydrogen plasma. J. Am. Chem. Soc. 2010, 132, 14751-14753.

26

Chen, K.; Kiriya, D.; Hettick, M.; Tosun, M.; Ha, T. J.; Madhvapathy, S. R.; Desai, S.; Sachid, A.; Javey, A. Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density. APL Mater. 2014, 2, 092504.

27

Hu, C.; Dong, D. D.; Yang, X. K.; Qiao, K. K.; Yang, D.; Deng, H.; Yuan, S. J.; Khan, J.; Lan, Y.; Song, H. S. et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv. Funct. Mater. 2017, 27, 1603605.

28

Wu, Z. T.; Luo, Z. Z.; Shen, Y. T.; Zhao, W. W.; Wang, W. H.; Nan, H. Y.; Guo, X. T.; Sun, L. T.; Wang, X. R.; You, Y. M. et al. Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Res. 2016, 9, 3622-3631.

29

Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photolu-minescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.

30

Crowther, A. C.; Ghassaei, A.; Jung, N.; Brus, L. E. Strong charge-transfer doping of 1 to 10 layer graphene by NO2. ACS Nano 2012, 6, 1865-1875.

31

She, Y. G.; Mai, Y. W.; McBride, W. E.; Zhang, Q. C.; McKenzie, D. R. Structural properties and nitrogen-loss characteristics in sputtered tungsten nitride films. Thin Solid Films 2000, 372, 257-264.

32

Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752-1758.

33

Nipane, A.; Karmakar, D.; Kaushik, N.; Karande, S.; Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128-2137.

34

Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275-6280.

35

Liu, J. X.; Zeng, M. Q.; Wang, L. X.; Chen, Y. T.; Xing, Z.; Zhang, T.; Liu, Z.; Zuo, J. L.; Nan, F.; Mendes, R. G. et al. Ultrafast self-limited growth of strictly monolayer WSe2 crystals. Small 2016, 12, 5741-5749.

36

Chen, J. Y.; Liu, B.; Liu, Y. P.; Tang, W.; Nai, C. T.; Li, L. J.; Zheng, J.; Gao, L. B.; Zheng, Y.; Shin, H. S. et al. Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 2015, 27, 6722-6727.

File
12274_2018_2087_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 November 2017
Revised: 27 April 2018
Accepted: 07 May 2018
Published: 01 June 2018
Issue date: September 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by National Program for Thousand Young Talents of China, the National Natural Science Foundation of China (Nos. 51773041, 21603038 and 21544001), Shanghai Committee of Science and Technology in China (No. 18ZR1404900), and Fudan University.

Return