Journal Home > Volume 11 , Issue 10

Nanoparticles have been widely explored for combined therapeutic and diagnostic applications. For example, lipid-based nanoparticles have been used to encapsulate multiple types of agents and achieve multi-functions. Herein, we enabled a co-delivery of mRNA molecules and superparamagnetic iron oxide nanoparticles (SPIONs) by using an amino-ester lipid-like nanomaterial. An orthogonal experimental design was used to identify the optimal formulation. The optimal formulation, MPA-Ab-8 LLNs, not only showed high encapsulation of both mRNA and SPIONs, but also increased the r2 relaxivity of SPIONs by more than 1.5-fold in vitro. MPA-Ab-8 LLNs effectively delivered mRNA and SPIONs into cells, and consequently induced high protein expression as well as strong MRI contrast. Consistent herewith, we observed both mRNA-mediated protein expression and an evident negative contrast enhancement of MRI signal in mice. In conclusion, amino-ester nanomaterials demonstrate great potential as delivery vehicles for theranostic applications.


menu
Abstract
Full text
Outline
About this article

Co-delivery of mRNA and SPIONs through amino-ester nanomaterials

Show Author's information Xiao Luo1Weiyu Zhao1Bin Li1Xinfu Zhang1Chengxiang Zhang1Anna Bratasz2Binbin Deng3David W. McComb3Yizhou Dong1,4,5,6,7,8( )
Division of Pharmaceutics and Pharmaceutical ChemistryCollege of PharmacyThe Ohio State UniversityColumbusOhio43210USA
Small Animal Imaging CoreThe Ohio State UniversityColumbusOhio43210USA
Center for Electron Microscopy and AnalysisDepartment of Materials Science and EngineeringThe Ohio State UniversityColumbusOhio43210USA
Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhio43210USA
The Center for Clinical and Translational ScienceThe Ohio State UniversityColumbusOhio43210USA
The Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhio43210USA
Dorothy M. Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusOhio43210USA
Department of Radiation OncologyThe Ohio State UniversityColumbusOhio43210USA

Abstract

Nanoparticles have been widely explored for combined therapeutic and diagnostic applications. For example, lipid-based nanoparticles have been used to encapsulate multiple types of agents and achieve multi-functions. Herein, we enabled a co-delivery of mRNA molecules and superparamagnetic iron oxide nanoparticles (SPIONs) by using an amino-ester lipid-like nanomaterial. An orthogonal experimental design was used to identify the optimal formulation. The optimal formulation, MPA-Ab-8 LLNs, not only showed high encapsulation of both mRNA and SPIONs, but also increased the r2 relaxivity of SPIONs by more than 1.5-fold in vitro. MPA-Ab-8 LLNs effectively delivered mRNA and SPIONs into cells, and consequently induced high protein expression as well as strong MRI contrast. Consistent herewith, we observed both mRNA-mediated protein expression and an evident negative contrast enhancement of MRI signal in mice. In conclusion, amino-ester nanomaterials demonstrate great potential as delivery vehicles for theranostic applications.

Keywords: magnetic resonance imaging (MRI), amino-ester nanomaterials, lipid-like nanoparticles (LLNs), dual-functional, superparamagnetic iron oxide nanoparticles (SPIONs), mRNA delivery

References(31)

1

Islam, M. A.; Reesor, E. K. G.; Xu, Y. J.; Zope, H. R.; Zetter, B. R.; Shi, J. J. Biomaterials for mRNA delivery. Biomater. Sci. 2015, 3, 1519–1533.

2

Hajj, K. A.; Whitehead, K. A. Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 17056.

3

De Rosa, F.; Guild, B.; Karve, S.; Smith, L.; Love, K.; Dorkin, J. R.; Kauffman, K. J.; Zhang, J.; Yahalom, B.; Anderson, D. G. et al. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther. 2016, 23, 699–707.

4

Ramaswamy, S.; Tonnu, N.; Tachikawa, K.; Limphong, P.; Vega, J. B.; Karmali, P. P.; Chivukula, P.; Verma, I. M. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc. Natl. Acad. Sci. USA 2017, 114, E1941–E1950.

5

Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015, 15, 7300–7306.

6

Thess, A.; Grund, S.; Mui, B. L.; Hope, M. J.; Baumhof, P.; Fotin-Mleczek, M.; Schlake, T. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 2015, 23, 1456–1464.

7

Fenton, O. S.; Kauffman, K. J.; McClellan, R. L.; Appel, E. A.; Dorkin, J. R.; Tibbitt, M. W.; Heartlein, M. W.; DeRosa, F.; Langer, R.; Anderson, D. G. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv. Mater. 2016, 28, 2939–2943.

8

Yin, H.; Song, C. Q.; Dorkin, J. R.; Zhu, L. J.; Li, Y. X.; Wu, Q. Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016, 34, 328–333.

9

Miller, J. B.; Zhang, S. Y.; Kos, P.; Xiong, H.; Zhou, K. J.; Perelman, S. S.; Zhu, H.; Siegwart, D. J. Non-viral CRISPR/cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem., Int. Ed. 2017, 56, 1059–1063.

10

Jiang, C.; Mei, M.; Li, B.; Zhu, X. R.; Zu, W. H.; Tian, Y. J.; Wang, Q. N.; Guo, Y.; Dong, Y. Z.; Tan, X. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 2017, 27, 440–443.

11

Cullis, P. R.; Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 2017, 25, 1467–1475.

12

Xue, H. Y.; Guo, P. B.; Wen, W. C.; Wong, H. L. Lipidbased nanocarriers for RNA delivery. Curr. Pharm. Des. 2015, 21, 3140–3147.

13

Zhao, Y.; Huang, L. Lipid nanoparticles for gene delivery. Adv. Genet. 2014, 88, 13–36.

14

Leung, A. K. K.; Tam, Y. Y. C.; Cullis, P. R. Lipid nanoparticles for short interfering RNA delivery. Adv. Genet. 2014, 88, 71–110.

15

Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967–977.

16

Li, B.; Luo, X.; Deng, B. B.; Wang, J. F.; McComb, D. W.; Shi, Y. M.; Gaensler, K. M. L.; Tan, X.; Dunn, A. L.; Kerlin, B. A. et al. An orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 2015, 15, 8099–8107.

17

Li, B.; Luo, X.; Deng, B. B.; Giancola, J. B.; McComb, D. W.; Schmittgen, T. D.; Dong, Y. Z. Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Sci. Rep. 2016, 6, 22137.

18

Luo, X.; Li, B.; Zhang, X.; Zhao, W.; Bratasz, A.; Deng, B.; McComb, D. W.; Dong, Y. Dual-functional lipid-like nanoparticles for delivery of mRNA and MRI contrast agents. Nanoscale 2017, 9, 1575–1579.

19

Zhang, X. F.; Li, B.; Luo, X.; Zhao, W. Y.; Jiang, J.; Zhang, C. X.; Gao, M.; Chen, X. F.; Dong, Y. Z. Biodegradable amino-ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo. ACS Appl. Mater. Interfaces 2017, 9, 25481–25487.

20

Stephen, Z. R.; Kievit, F. M.; Zhang, M. Q. Magnetite nanoparticles for medical MR imaging. Mater. Today 2011, 14, 330–338.

21

Szpak, A.; Fiejdasz, S.; Prendota, W.; Strączek, T.; Kapusta, C.; Szmyd, J.; Nowakowska, M.; Zapotoczny, S. T1–T2 dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J. Nanopart. Res. 2014, 16, 2678.

22

Li, L.; Jiang, W.; Luo, K.; Song, H. M.; Lan, F.; Wu, Y.; Gu, Z. W. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 2013, 3, 595–615.

23

Gossuin, Y.; Gillis, P.; Hocq, A.; Vuong, Q. L.; Roch, A. Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009, 1, 299–310.

24

Weissleder, R.; Stark, D. D.; Engelstad, B. L.; Bacon, B. R.; Compton, C. C.; White, D. L.; Jacobs, P.; Lewis, J. Superparamagnetic iron oxide: Pharmacokinetics and toxicity. AJR Am. J. Roentgenol. 1989, 152, 167–173.

25

Zhang, R.; Li, Y.; Hu, B. B.; Lu, Z. G.; Zhang, J. C.; Zhang, X. Traceable nanoparticle delivery of small interfering RNA and retinoic acid with temporally release ability to control neural stem cell differentiation for alzheimer's disease therapy. Adv. Mater. 2016, 28, 6345–6352.

26

Chen, Y. C.; Min, C. N.; Wu, H. C.; Lin, C. T.; Hsieh, W. Y. In vitro evaluation of the L-peptide modified magnetic lipid nanoparticles as targeted magnetic resonance imaging contrast agent for the nasopharyngeal cancer. J. Biomater. Appl. 2013, 28, 580–594.

27

Albuquerque, J.; Moura, C. C.; Sarmento, B.; Reis, S. Solid lipid nanoparticles: A potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules 2015, 20, 11103–11118.

28

Oumzil, K.; Ramin, M. A.; Lorenzato, C.; Hémadou, A.; Laroche, J.; Jacobin-Valat, M. J.; Mornet, S.; Roy, C. E.; Kauss, T.; Gaudin, K. et al. Solid lipid nanoparticles for image-guided therapy of atherosclerosis. Bioconjug. Chem. 2016, 27, 569–575.

29

Bai, J.; Wang, J. T. W.; Rubio, N.; Protti, A.; Heidari, H.; Elgogary, R.; Southern, P.; Al-Jamal, W. T.; Sosabowski, J.; Shah, A. M. et al. Triple-modal imaging of magneticallytargeted nanocapsules in solid tumours in vivo. Theranostics 2016, 6, 342–356.

30

Guo, R. M.; Cao, N.; Zhang, F.; Wang, Y. R.; Wen, X. H.; Shen, J.; Shuai, X. T. Controllable labelling of stem cells with a novel superparamagnetic iron oxide-loaded cationic nanovesicle for MR imaging. Eur. Radiol. 2012, 22, 2328–2337.

31

Sharma, V. K.; Alipour, A.; Soran-Erdem, Z.; Aykut, Z. G.; Demir, H. V. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1-T2 MRI contrast agents. Nanoscale 2015, 7, 10519–10526.

Publication history
Copyright
Acknowledgements

Publication history

Received: 09 March 2018
Revised: 21 April 2018
Accepted: 26 April 2018
Published: 12 May 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

Y. D. acknowledges support from Early Career Investigator Award from the Bayer Hemophilia Awards Program, Research Awards from the National PKU Alliance, New Investigator Grant from the American Association of Pharmaceutical Scientists (AAPS) Foundation, Maximizing Investigators' Research Award 1R35GM119679 from the National Institute of General Medical Sciences as well as the start-up fund from the College of Pharmacy at The Ohio State University.

Return