Journal Home > Volume 11 , Issue 10

Biopharmaceuticals, including proteins, DNAs, and RNAs, hold vast promise for the treatment of many disorders, such as cancer, diabetes, autoimmune diseases, infectious diseases, and rare diseases. The application of biopharmaceuticals, however, is limited by their poor stability, immunogenicity, suboptimal pharmacokinetic performance, undesired tissue distribution, and low penetration through biological barriers. In situ polymerization provides an appealing and promising platform to improve the pharmacological characteristics of biopharmaceuticals. Instead of the traditional "grafting to" polymer–biomolecule conjugation, in situ polymerization grows polymers on the surfaces of the biomacromolecules, resulting in easier purification procedures, high conjugation yields, and unique structures. Herein, this review surveys recent advances in the polymerization methodologies. Additionally, we further review improved therapeutic performance of the resultant nanomedicines. Finally, the opportunities, as well as the challenges, of these nanocomposites in the biomedical fields are discussed.


menu
Abstract
Full text
Outline
About this article

In situ polymerization on biomacromolecules for nanomedicines

Show Author's information Xiangqian JiaLuyao WangJuanjuan Du( )
School of Pharmaceutical SciencesTsinghua UniversityBeijing100084China

Abstract

Biopharmaceuticals, including proteins, DNAs, and RNAs, hold vast promise for the treatment of many disorders, such as cancer, diabetes, autoimmune diseases, infectious diseases, and rare diseases. The application of biopharmaceuticals, however, is limited by their poor stability, immunogenicity, suboptimal pharmacokinetic performance, undesired tissue distribution, and low penetration through biological barriers. In situ polymerization provides an appealing and promising platform to improve the pharmacological characteristics of biopharmaceuticals. Instead of the traditional "grafting to" polymer–biomolecule conjugation, in situ polymerization grows polymers on the surfaces of the biomacromolecules, resulting in easier purification procedures, high conjugation yields, and unique structures. Herein, this review surveys recent advances in the polymerization methodologies. Additionally, we further review improved therapeutic performance of the resultant nanomedicines. Finally, the opportunities, as well as the challenges, of these nanocomposites in the biomedical fields are discussed.

Keywords: nanomedicine, gene therapy, in situ polymerization, controlled radical polymerization, nanocapsules, protein therapy

References(117)

1

Kinch, M. S. An overview of FDA–approved biologics medicines. Drug Discov. Today 2015, 20, 393–398.

2

Moorkens, E.; Meuwissen, N.; Huys, I.; Declerck, P.; Vulto, A. G.; Simoens, S. The market of biopharmaceutical medicines: A snapshot of a diverse industrial landscape. Front. Pharmacol. 2017, 8, 314.

3

Miller, K. L.; Lanthier, M. Innovation in biologic new molecular entities: 1986–2014. Nat. Rev. Drug Discov. 2015, 14, 83–83.

4

Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39.

5

Carter, P. J. Introduction to current and future protein therapeutics: A protein engineering perspective. Exp. Cell Res. 2011, 317, 1261–1269.

6

Morrison, C. Fresh from the biotech pipeline–2017. Nat. Biotechnol. 2018, 36, 131–136.

7

Smalley, E. First AAV gene therapy poised for landmark approval. Nat. Biotechnol. 2017, 35, 998–999.

8

Yin, H.; Kauffman, K. J.; Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 2017, 16, 387–399.

9

Cornu, T. I.; Mussolino, C.; Cathomen, T. Refining strategies to translate genome editing to the clinic. Nat. Med. 2017, 23, 415–423.

10

Vazquez, E.; Corchero, J. L.; Villaverde, A. Post–production protein stability: Trouble beyond the cell factory. Microb. Cell Fact. 2011, 10, 60.

11

Tsui, N. B. Y.; Ng, E. K. O.; Lo, Y. M. D. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem. 2002, 48, 1647–1653.

12

Morales, J. O.; Fathe, K. R.; Brunaugh, A.; Ferrati, S.; Li, S.; Montenegro–Nicolini, M.; Mousavikhamene, Z.; McConville, J. T.; Prausnitz, M. R.; Smyth, H. D. C. Challenges and future prospects for the delivery of biologics: Oral mucosal, pulmonary, and transdermal routes. AAPS J. 2017, 19, 652–668.

13

Ray, M.; Lee, Y. W.; SCaletti, F.; Yu, R. J.; Rotello, V. M. Intracellular delivery of proteins by nanocarriers. Nanomedicine 2017, 12, 941–952.

14

Gu, Z.; Biswas, A.; Zhao, M. X.; Tang, Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev. 2011, 40, 3638–3655.

15

Du, J. J.; Jin, J.; Yan, M.; Lu, Y. F. Synthetic nanocarriers for intracellular protein delivery. Curr. Drug Metab. 2012, 13, 82–92.

16

Kontermann, R. E. Half–life extended biotherapeutics. Expert Opin. Biol. Ther. 2016, 16, 903–915.

17

Yanover, C.; Jain, N.; Pierce, G.; Howard, T. E.; Sauna, Z. E. Pharmacogenetics and the immunogenicity of protein therapeutics. Nat. Biotechnol. 2011, 29, 870–873.

18

Mingozzi, F.; High, K. A. Immune responses to AAV vectors: Overcoming barriers to successful gene therapy. Blood 2013, 122, 23–36.

19

Haag, R.; Kratz, F. Polymer therapeutics: Concepts and applications. Angew. Chem., Int. Ed. 2006, 45, 1198–1215.

20

Wu, Y. Z.; Ng, D. Y. W.; Kuan, S. L.; Weil, T. Protein–polymer therapeutics: A macromolecular perspective. Biomater. Sci. 2015, 3, 214–230.

21

Zhang, P.; Wagner, E. History of polymeric gene delivery systems. Top. Curr. Chem. 2017, 375, 26.

22

Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581–593.

23

Turecek, P. L.; Bossard, M. J.; Schoetens, F.; Ivens, I. A. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 2016, 105, 460–475.

24

Harris, J. M.; Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221.

25

Pelegri–O'Day, E. M.; Lin, E. W.; Maynard, H. D. Therapeutic protein–polymer conjugates: Advancing beyond PEGylation. J. Am. Chem. Soc. 2014, 136, 14323–14332.

26

Qi, Y. Z.; Chilkoti, A. Growing polymers from peptides and proteins: A biomedical perspective. Polym. Chem. 2014, 5, 266–276.

27

Ye, Y. Q.; Yu, J. C.; Gu, Z. Versatile protein nanogels prepared by in situ polymerization. Macromol. Chem. Phys. 2016, 217, 333–343.

28

Bontempo, D.; Maynard, H. D. Streptavidin as a macroinitiator for polymerization: In situ protein–polymer conjugate formation. J. Am. Chem. Soc. 2005, 127, 6508–6509.

29

Heredia, K. L.; Bontempo, D.; Ly, T.; Byers, J. T.; Halstenberg, S.; Maynard, H. D. In situ preparation of protein—"Smart" polymer conjugates with retention of bioactivity. J. Am. Chem. Soc. 2005, 127, 16955–16960.

30

Lele, B. S.; Murata, H.; Matyjaszewski, K.; Russell, A. J. Synthesis of uniform protein–polymer conjugates. Biomacromolecules 2005, 6, 3380–3387.

31

Nicolas, J.; San Miguel, V.; Mantovani, G.; Haddleton, D. M. Fluorescently tagged polymer bioconjugates from protein derived macroinitiators. Chem. Commun. 2006, 4697–4699.

32

Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current status and future perspectives. Macromolecules 2012, 45, 4015–4039.

33

Jakubowski, W.; Matyjaszewski, K. Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules 2005, 38, 4139–4146.

34

Min, K.; Gao, H. F.; Matyjaszewski, K. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). J. Am. Chem. Soc. 2005, 127, 3825–3830.

35

Magnusson, J. P.; Bersani, S.; Salmaso, S.; Alexander, C.; Caliceti, P. In situ growth of side–chain PEG polymers from functionalized human growth hormone—A new technique for preparation of enhanced protein–polymer conjugates. Bioconjugate Chem. 2010, 21, 671–678.

36

Yasayan, G.; Saeed, A. O.; Fernández–Trillo, F.; Allen, S.; Davies, M. C.; Jangher, A.; Paul, A.; Thurecht, K. J.; King, S. M.; Schweins, R. et al. Responsive hybrid block co–polymer conjugates of proteins–controlled architecture to modulate substrate specificity and solution behaviour. Polym. Chem. 2011, 2, 1567–1578.

37

Zhu, B. B.; Lu, D. N.; Ge, J.; Liu, Z. Uniform polymerprotein conjugate by aqueous AGET ATRP using protein as a macroinitiator. Acta Biomater. 2011, 7, 2131–2138.

38

Averick, S.; Simakova, A.; Park, S.; Konkolewicz, D.; Magenau, A. J. D.; Mehl, R. A.; Matyjaszewski, K. ATRP under biologically relevant conditions: Grafting from a protein. ACS Macro Lett. 2012, 1, 6–10.

39

Mansfield, K. M.; Maynard, H. D. Site–specific insulintrehalose glycopolymer conjugate by grafting from strategy improves bioactivity. ACS Macro Lett. 2018, 7, 324–329.

40

Averick, S. E.; Bazewicz, C. G.; Woodman, B. F.; Simakova, A.; Mehl, R. A.; Matyjaszewski, K. Protein–polymer hybrids: Conducting ARGET ATRP from a genetically encoded cleavable ATRP initiator. Eur. Polym. J. 2013, 49, 2919–2924.

41

Cohen–Karni, D.; Kovaliov, M.; Ramelot, T.; Konkolewicz, D.; Graner, S.; Averick, S. Grafting challenging monomersfrom proteins using aqueous ICAR ATRP under bio–relevant conditions. Polym. Chem. 2017, 8, 3992–3998.

42

Zhang, Q.; Li, M. X.; Zhu, C. Y.; Nurumbetov, G.; Li, Z. D.; Wilson, P.; Kempe, K.; Haddleton, D. M. Well–defined protein/peptide–polymer conjugates by aqueous Cu–LRP: Synthesis and controlled self–assembly. J. Am. Chem. Soc. 2015, 137, 9344–9353.

43

Semsarilar, M.; Perrier, S. "Green" reversible additionfragmentation chain–transfer (RAFT) polymerization. Nat. Chem. 2010, 2, 811–820.

44

Liu, J. Q.; Bulmus, V.; Herlambang, D. L.; Barner–Kowollik, C.; Stenzel, M. H.; Davis, T. P. In situ formation of proteinpolymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew. Chem., Int. Ed. 2007, 46, 3099–3103.

45

Boyer, C.; Bulmus, V.; Liu, J. Q.; Davis, T. P.; Stenzel, M. H.; Barner–Kowollik, C. Well–defined protein–polymer conjugates via in situ RAFT polymerization. J. Am. Chem. Soc. 2007, 129, 7145–7154.

46

Liu, J. Q.; Liu, H. Y.; Bulmus, V.; Tao, L.; Boyer, C.; Davis, T. P. A simple methodology for the synthesis of heterotelechelic protein–polymer–biomolecule conjugates. J. Polym. Sci. Pol. Chem. 2010, 48, 1399–1405.

47

De, P.; Li, M.; Gondi, S. R.; Sumerlin, B. S. Temperatureregulated activity of responsive polymer–protein conjugates prepared by grafting–from via RAFT polymerization. J. Am. Chem. Soc. 2008, 130, 11288–11289.

48

Li, H. M.; Li, M.; Yu, X.; Bapat, A. P.; Sumerlin, B. S. Block copolymer conjugates prepared by sequentially grafting from proteins via RAFT. Polym. Chem. 2011, 2, 1531–1535.

49

Li, M.; Li, H. M.; De, P.; Sumerlin, B. S. Thermoresponsive block copolymer–protein conjugates prepared by graftingfrom via RAFT polymerization. Macromol. Rapid Commun. 2011, 32, 354–359.

50

Li, X.; Wang, L.; Chen, G. J.; Haddleton, D. M.; Chen, H. Visible light induced fast synthesis of protein–polymer conjugates: Controllable polymerization and protein activity. Chem. Commun. 2014, 50, 6506–6508.

51

Tucker, B. S.; Coughlin, M. L.; Figg, C. A.; Sumerlin, B. S. Grafting–from proteins using metal–free PET–RAFT polymerizations under mild visible–light irradiation. ACS Macro Lett. 2017, 6, 452–457.

52

Kovaliov, M.; Allegrezza, M. L.; Richter, B.; Konkolewicz, D.; Averick, S. Synthesis of lipase polymer hybrids with retained or enhanced activity using the grafting–from strategy. Polymer 2018, 137, 338–345.

53

Isarov, S. A.; Pokorski, J. K. Protein ROMP: Aqueous graft–from ring–opening metathesis polymerization. ACS Macro Lett. 2015, 4, 969–973.

54

Fishman, J. M.; Kiessling, L. L. Synthesis of functionalizable and degradable polymers by ring–opening metathesis polymerization. Angew. Chem., Int. Ed. 2013, 52, 5061–5064.

55

Gao, W. P.; Liu, W. G.; Mackay, J. A.; Zalutsky, M. R.; Toone, E. J.; Chilkoti, A. In situ growth of a stoichiometric PEG–like conjugate at a protein's N–terminus with significantly improved pharmacokinetics. Proc. Natl. Acad. Sci. USA 2009, 106, 15231–15236.

56

Kim, C. H.; Axup, J. Y.; Schultz, P. G. Protein conjugation with genetically encoded unnatural amino acids. Curr. Opin. Chem. Biol. 2013, 17, 412–419.

57

Liu, C. C.; Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 2010, 79, 413–444.

58

Peeler, J. C.; Woodman, B. F.; Averick, S.; Miyake–Stoner, S. J.; Stokes, A. L.; Hess, K. R.; Matyjaszewski, K.; Mehl, R. A. Genetically encoded initiator for polymer growth from proteins. J. Am. Chem. Soc. 2010, 132, 13575–13577.

59

Gao, W. P.; Liu, W. G.; Christensen, T.; Zalutsky, M. R.; Chilkoti, A. In situ growth of a PEG–like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. Proc. Natl. Acad. Sci. USA 2010, 107, 16432–16437.

60

Qi, Y. Z.; Amiram, M.; Gao, W. P.; McCafferty, D. G.; Chilkoti, A. Sortase–catalyzed initiator attachment enables high yield growth of a stealth polymer from the C terminus of a protein. Macromol. Rapid Commun. 2013, 34, 1256–1260.

61

Pokorski, J. K.; Breitenkamp, K.; Liepold, L. O.; Qazi, S.; Finn, M. G. Functional virus–based polymer–protein nanoparticles by atom transfer radical polymerization. J. Am. Chem. Soc. 2011, 133, 9242–9245.

62

Lou, X. H.; He, L. DNA–accelerated atom transfer radical polymerization on a gold surface. Langmuir 2006, 22, 2640–2646.

63

Qian, H.; He, L. Surface–Initiated activators generated by electron transfer for atom transfer radical polymerization in detection of DNA point mutation. Anal. Chem. 2009, 81, 4536–4542.

64

Lou, X. H.; Lewis, M. S.; Gorman, C. B.; He, L. Detection of DNA point mutation by atom transfer radical polymerization. Anal. Chem. 2005, 77, 4698–4705.

65

Lou, X. H.; Wang, C. Y.; He, L. Core–shell Au nanoparticle formation with DNA–polymer hybrid coatings using aqueous ATRP. Biomacromolecules 2007, 8, 1385–1390.

66

Averick, S. E.; Dey, S. K.; Grahacharya, D.; Matyjaszewski, K.; Das, S. R. Solid–phase incorporation of an ATRP initiator for polymer–DNA biohybrids. Angew. Chem., Int. Ed. 2014, 53, 2739–2744.

67

Pan, X. C.; Lathwal, S.; Mack, S.; Yan, J. J.; Das, S. R.; Matyjaszewski, K. Automated synthesis of well–defined polymers and biohybrids by atom transfer radical polymerization using a DNA synthesizer. Angew. Chem., Int. Ed. 2017, 56, 2740–2743.

68

Lin, E. W.; Maynard, H. D. Grafting from small interfering ribonucleic acid (siRNA) as an alternative synthesis route to siRNA–polymer conjugates. Macromolecules 2015, 48, 5640–5647.

69

Tokura, Y.; Jiang, Y. Y.; Welle, A.; Stenzel, M. H.; Krzemien, K. M.; Michaelis, J.; Berger, R.; Barner–Kowollik, C.; Wu, Y. Z.; Weil, T. Bottom–up fabrication of nanopatterned polymers on DNA origami by in situ atom–transfer radical polymerization. Angew. Chem., Int. Ed. 2016, 55, 5692–5697.

70

Yan, M.; Ge, J.; Liu, Z.; Ouyang, P. K. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J. Am. Chem. Soc. 2006, 128, 11008–11009.

71

Yan, M.; Liu, Z. X.; Lu, D. N.; Liu, Z. Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature. Biomacromolecules 2007, 8, 560–565.

72

Ge, J.; Lu, D. A.; Wang, J.; Liu, Z. Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide. Biomacromolecules 2009, 10, 1612–1618.

73

Yan, M.; Du, J. J.; Gu, Z.; Liang, M.; Hu, Y. F.; Zhang, W. J.; Priceman, S.; Wu, L. L.; Zhou, Z. H.; Liu, Z. et al. A novel intracellular protein delivery platform based on singleprotein nanocapsules. Nat. Nanotechnol. 2010, 5, 48–53.

74

Ge, J.; Lu, D. N.; Wang, J.; Yan, M.; Lu, Y. F.; Liu, Z. Molecular fundamentals of enzyme nanogels. J. Phys. Chem. B 2008, 112, 14319–14324.

75

Gu, Z.; Yan, M.; Hu, B. L.; Joo, K. I.; Biswas, A.; Huang, Y.; Lu, Y. F.; Wang, P.; Tang, Y. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 2009, 9, 4533–4538.

76

Biswas, A.; Joo, K. I.; Liu, J.; Zhao, M. X.; Fan, G. P.; Wang, P.; Gu, Z.; Tang, Y. Endoprotease–mediated intracellular protein delivery using nanocapsules. ACS Nano 2011, 5, 1385–1394.

77

Wen, J.; Anderson, S. M.; Du, J. J.; Yan, M.; Wang, J.; Shen, M. Q.; Lu, Y. F.; Segura, T. Controlled protein delivery based on enzyme–responsive nanocapsules. Adv. Mater. 2011, 23, 4549–4553.

78

Zhao, M. X.; Biswas, A.; Hu, B. L.; Joo, K. I.; Wang, P.; Gu, Z.; Tang, Y. Redox–responsive nanocapsules for intracellular protein delivery. Biomaterials 2011, 32, 5223–5230.

79

Biswas, A.; Liu, Y.; Liu, T. F.; Fan, G. P.; Tang, Y. Polyethylene glycol–based protein nanocapsules for functional delivery of a differentiation transcription factor. Biomaterials 2012, 33, 5459–5467.

80

Yan, M.; Liang, M.; Wen, J.; Liu, Y.; Lu, Y. F.; Chen, I. S. Y. Single siRNA nanocapsules for enhanced RNAi delivery. J. Am. Chem. Soc. 2012, 134, 13542–13545.

81

Liang, M.; Yan, M.; Lu, Y. F.; Chen, I. S. Y. Retargeting vesicular stomatitis virus glycoprotein pseudotyped lentiviral vectors with enhanced stability by in situ synthesized polymer shell. Hum. Gene Ther. Method. 2013, 24, 11–18.

82

Zhao, M. X.; Hu, B. L.; Gu, Z.; Joo, K. I.; Wang, P.; Tang, Y. Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor–selective protein complex. Nano Today 2013, 8, 11–20.

83

Zhao, M. X.; Liu, Y. R.; Hsieh, R. S.; Wang, N.; Tai, W. Y.; Joo, K. I.; Wang, P.; Gu, Z.; Tang, Y. Clickable protein nanocapsules for targeted delivery of recombinant p53 protein. J. Am. Chem. Soc. 2014, 136, 15319–15325.

84

Beloqui, A.; Kobitski, A. Y.; Nienhaus, G. U.; Delaittre, G. A simple route to highly active single–enzyme nanogels. Chem. Sci. 2018, 9, 1006–1013.

85

Du, J. J.; Yu, C. M.; Pan, D. C.; Li, J. M.; Chen, W.; Yan, M.; Segura, T.; Lu, Y. F. Quantum–dot–decorated robust transductable bioluminescent nanocapsules. J. Am. Chem. Soc. 2010, 132, 12780–12781.

86

Du, J. J.; Jin, J.; Liu, Y.; Li, J.; Tokatlian, T.; Lu, Z. H.; Segura, T.; Yuan, X. B.; Yang, X. J.; Lu, Y. F. Gold–nanocrystalenhanced bioluminescent nanocapsules. ACS Nano 2014, 8, 9964–9969.

87

Gu, Z.; Biswas, A.; Joo, K. I.; Hu, B. L.; Wang, P.; Tang, Y. Probing protease activity by single–fluorescent–protein nanocapsules. Chem. Commun. 2010, 46, 6467–6469.

88

Li, J.; Jin, X.; Liu, Y.; Li, F.; Zhang, L. L.; Zhu, X. Y.; Lu, Y. F. Robust enzyme–silica composites made from enzyme nanocapsules. Chem. Commun. 2015, 51, 9628–9631.

89

Liu, Y.; Du, J. J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 2013, 8, 187–192.

90

Los, M.; Panigrahi, S.; Rashedi, I.; Mandal, S.; Stetefeld, J.; Essmann, F.; Schulze–Osthoff, K. Apoptin, a tumor–selective killer. Biochim. Biophys. Acta 2009, 1793, 1335–1342.

91

Weng, D.; Jiang, Z. K.; Jin, J.; Wu, L.; Lu, Y. F. Enhanced structural stability of adenovirus nanocapsule. Prog. Nat. Sci. : Mater. 2014, 24, 171–174.

92

Liu, C. Y.; Wen, J.; Meng, Y. B.; Zhang, K. L.; Zhu, J. L.; Ren, Y.; Qian, X. M.; Yuan, X. B.; Lu, Y. F.; Kang, C. S. Efficient delivery of therapeutic miRNA nanocapsules for tumor suppression. Adv. Mater. 2015, 27, 292–297.

93

Yan, M.; Wen, J.; Liang, M.; Lu, Y. F.; Kamata, M.; Chen, I. S. Y. Modulation of gene expression by polymer nanocapsule delivery of DNA cassettes encoding small RNAs. PLoS One 2015, 10, e0127986.

94

Averick, S. E.; Magenau, A. J. D.; Simakova, A.; Woodman, B. F.; Seong, A.; Mehl, R. A.; Matyjaszewski, K. Covalently incorporated protein–nanogels using AGET ATRP in an inverse miniemulsion. Polym. Chem. 2011, 2, 1476–1478.

95

Lucon, J.; Qazi, S.; Uchida, M.; Bedwell, G. J.; LaFrance, B.; Prevelige, P. E., Jr.; Douglas, T. Use of the interior cavity of the P22 capsid for site–specific initiation of atom–transfer radical polymerization with high–density cargo loading. Nat. Chem. 2012, 4, 781–788.

96

Wang, J. T.; Hong, Y. H.; Ji, X. T.; Zhang, M. M.; Liu, L.; Zhao, H. Y. In situ fabrication of PHEMA–BSA core–corona biohybrid particles. J. Mater. Chem. B 2016, 4, 4430–4438.

97

Wei, W.; Du, J. J.; Li, J.; Yan, M.; Zhu, Q.; Jin, X.; Zhu, X. Y.; Hu, Z. M.; Tang, Y.; Lu, Y. F. Construction of robust enzyme nanocapsules for effective organophosphate decontamination, detoxification, and protection. Adv. Mater. 2013, 25, 2212–2218.

98

Xu, G. F.; Xu, Y. H.; Li, A. H.; Chen, T.; Liu, J. Q. Enzymatic bioactivity investigation of glucose oxidase modified with hydrophilic or hydrophobic polymers via in situ RAFT polymerization. J. Polym. Sci. : Pol. Chem. 2017, 55, 1289–1293.

99

Zhang, J. J.; Du, J. J.; Yan, M.; Dhaliwal, A.; Wen, J.; Liu, F. Q.; Segura, T.; Lu, Y. F. Synthesis of protein nano–conjugates for cancer therapy. Nano Res. 2011, 4, 425–433.

100

Hu, J.; Zhao, W. G.; Gao, Y.; Sun, M. M.; Wei, Y.; Deng, H. T.; Gao, W. P. Site–specific in situ growth of a cyclized protein–polymer conjugate with improved stability and tumor retention. Biomaterials 2015, 47, 13–19.

101

Zhang, P.; Sun, F.; Tsao, C.; Liu, S. J.; Jain, P.; Sinclair, A.; Hung, H. C.; Bai, T.; Wu, K.; Jiang, S. Y. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc. Natl. Acad. Sci. USA 2015, 112, 12046–12051.

102

Liang, S.; Liu, Y.; Jin, X.; Liu, G.; Wen, J.; Zhang, L. L.; Li, J.; Yuan, X. B.; Chen, I. S. Y.; Chen, W. et al. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 2016, 9, 1022–1031.

103

Zhang, L. L.; Liu, Y.; Liu, G.; Xu, D.; Liang, S.; Zhu, X. Y.; Lu, Y. F.; Wang, H. Prolonging the plasma circulation of proteins by nano–encapsulation with phosphorylcholinebased polymer. Nano Res. 2016, 9, 2424–2432.

104

Zhang, P.; Jain, P.; Tsao, C.; Sinclair, A.; Sun, F.; Hung, H. C.; Bai, T.; Wu, K.; Jiang, S. Y. Butyrylcholinesterase nanocapsule as a long circulating bioscavenger with reduced immune response. J. Control. Release 2016, 230, 73–78.

105

Zhang, X. P.; Chen, W.; Zhu, X. Y.; Lu, Y. F. Encapsulating therapeutic proteins with polyzwitterions for lower macrophage nonspecific uptake and longer circulation time. ACS Appl. Mater. Interfaces 2017, 9, 7972–7978.

106

Zhang, X. P.; Xu, D.; Jin, X.; Liu, G.; Liang, S.; Wang, H.; Chen, W.; Zhu, X. Y.; Lu, Y. F. Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management. J. Control. Release 2017, 255, 54–61.

107

Hu, J.; Wang, G. L.; Zhao, W. G.; Liu, X. Y.; Zhang, L. B.; Gao, W. P. Site–specific in situ growth of an interferonpolymer conjugate that outperforms PEGASYS in cancer therapy. Biomaterials 2016, 96, 84–92.

108

Hu, J.; Wang, G. L.; Zhao, W. G.; Gao, W. P. In situ growth of a C–terminal interferon–alpha conjugate of a phospholipid polymer that outperforms PEGASYS in cancer therapy. J. Control. Release 2016, 237, 71–77.

109

Zhang, J. J.; Lei, Y. G.; Dhaliwal, A.; Ng, Q. K. T.; Du, J. J.; Yan, M.; Lu, Y. F.; Segura, T. Protein–polymer nanoparticles for nonviral gene delivery. Biomacromolecules 2011, 12, 1006–1014.

110

Liu, X. Y.; Gao, W. P. In situ growth of self–assembled protein–polymer nanovesicles for enhanced intracellular protein delivery. ACS Appl. Mater. Interfaces 2017, 9, 2023–2028.

111

Zhu, S. W.; Nih, L.; Carmichael, S. T.; Lu, Y. F.; Segura, T. Enzyme–responsive delivery of multiple proteins with spatiotemporal control. Adv. Mater. 2015, 27, 3620–3625.

112

Wen, J.; Yan, M.; Liu, Y.; Li, J.; Xie, Y. M.; Lu, Y. F.; Kamata, M.; Chen, I. S. Y. Specific elimination of latently HIV–1 infected cells using HIV–1 protease–sensitive toxin nanocapsules. PLoS One 2016, 11, e0151572.

113

Sun, W. J.; Jiang, T. Y.; Lu, Y.; Reiff, M.; Mo, R.; Gu, Z. Cocoon–like self–degradable dna nanoclew for anticancer drug delivery. J. Am. Chem. Soc. 2014, 136, 14722–14725.

114

Tian, H. J.; Du, J. J.; Wen, J.; Liu, Y.; Montgomery, S. R.; Scott, T. P.; Aghdsi, B.; Xiong, C. J.; Suzuki, A.; Hayashi, T. et al. Growth–factor nanocapsules that enable tunable controlled release for bone regeneration. ACS Nano 2016, 10, 7362–7369.

115

Gu, Z.; Dang, T. T.; Ma, M. L.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y. Z.; Zhang, Y. L.; Anderson, D. G. Glucose–responsive microgels integrated with enzyme nanocapsules for closed–loop insulin delivery. ACS Nano 2013, 7, 6758–6766.

116

Cai, K. M.; Wang, A. Z.; Yin, L. C.; Cheng, J. J. Bio–nano interface: The impact of biological environment on nanomaterials and their delivery properties. J. Control. Release 2017, 263, 211–222.

117

Middleton, J. C.; Tipton, A. J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346.

Publication history
Copyright
Acknowledgements

Publication history

Received: 18 March 2018
Revised: 19 April 2018
Accepted: 20 April 2018
Published: 16 May 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by The National Key Research and Development Program of China (No. 2017YFA0207900) and The Global Talents Recruitment Program of China.

Return