Journal Home > Volume 11 , Issue 9

Despite the intrinsic peroxidase-like activity of Prussian blue nanoparticles (PBNPs), their enzyme-mimic mechanism has been scarcely investigated to date. Herein, we probed the catalytic site of PBNPs for the first time, by comparing their peroxidase-like activity with that of a series of Prussian blue analogs (PBAs) in which Fe atoms were replaced by Co, Ni, and Cu. The PBNPs exhibited the highest maximal reaction velocity (1.941 μM·s-1), which was at least 13 times higher than that of the PBAs, demonstrating that the peroxidase-like properties of PBNPs could be ascribed to the FeNx (x = 4-6) instead of the FeC6 units. Notably, the PBNPs/H2O2 couple also showed much higher oxidizability than ·OH radicals produced from the Fenton reaction, implying that a high active Fe(Ⅳ)=O intermediate might be formed in the FeNx units. This study can thus pave the way for the wider application of PBNPs in biomimetic reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Prussian blue with intrinsic heme-like structure as peroxidase mimic

Show Author's information Jinxing Chen1,2Qingqing Wang1Liang Huang1,2Hui Zhang1,3Kai Rong1,2He Zhang1,2Shaojun Dong1,2,3( )
State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
University of Science and Technology of ChinaHefei230026China
University of Chinese Academy of SciencesBeijing100049China

Abstract

Despite the intrinsic peroxidase-like activity of Prussian blue nanoparticles (PBNPs), their enzyme-mimic mechanism has been scarcely investigated to date. Herein, we probed the catalytic site of PBNPs for the first time, by comparing their peroxidase-like activity with that of a series of Prussian blue analogs (PBAs) in which Fe atoms were replaced by Co, Ni, and Cu. The PBNPs exhibited the highest maximal reaction velocity (1.941 μM·s-1), which was at least 13 times higher than that of the PBAs, demonstrating that the peroxidase-like properties of PBNPs could be ascribed to the FeNx (x = 4-6) instead of the FeC6 units. Notably, the PBNPs/H2O2 couple also showed much higher oxidizability than ·OH radicals produced from the Fenton reaction, implying that a high active Fe(Ⅳ)=O intermediate might be formed in the FeNx units. This study can thus pave the way for the wider application of PBNPs in biomimetic reactions.

Keywords: Prussian blue, Prussian blue analogs, peroxidase, high-valent iron-oxo

References(44)

1

Dawson, J. H. Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 1988, 240, 433-439.

2

Meunier, B.; de Visser, S. P.; Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem. Rev. 2004, 104, 3947-3980.

3

Kathiresan, M.; English, A. M. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H2O2. Chem. Sci. 2017, 8, 1152-1162.

4

Kwon, H.; Basran, J.; Casadei, C. M.; Fielding, A. J.; Schrader, T. E.; Ostermann, A.; Devos, J. M.; Aller, P.; Blakeley, M. P.; Moody, P. C. E. et al. Direct visualization of a Fe(Ⅳ)-OH intermediate in a heme enzyme. Nat. Commun. 2016, 7, 13445.

5

Collins, T. J.; Ryabov, A. D. Targeting of high-valent iron-TAML activators at hydrocarbons and beyond. Chem. Rev. 2017, 117, 9140-9162.

6

Nam, W.; Lee, Y. M.; Fukuzumi, S. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(Ⅳ)-oxo complexes. Acc. Chem. Res. 2014, 47, 1146-1154.

7

Engelmann, X.; Monte-Pérez, I.; Ray, K. Oxidation reactions with bioinspired mononuclear non-heme metal-oxo complexes. Angew. Chem., Int. Ed. 2016, 55, 7632-7649.

8

Ségaud, N.; Anxolabéhère-Mallart, E.; Sénéchal-David, K.; Acosta-Rueda, L.; Robert, M.; Banse, F. Electrochemical study of a nonheme Fe(Ⅱ) complex in the presence of dioxygen. Insights into the reductive activation of O2 at Fe(Ⅱ) centers. Chem. Sci. 2015, 6, 639-647.

9

Zang, C.; Liu, Y. G.; Xu, Z. J.; Tse, C. W.; Guan, X. G.; Wei, J. H.; Huang, J. S.; Che, C. M. Highly enantioselective iron-catalyzed cis-dihydroxylation of alkenes with hydrogen peroxide oxidant via an Fe-OOH reactive intermediate. Angew. Chem., Int. Ed. 2016, 55, 10253-10257.

10

Ghosh, M.; Singh, K. K.; Panda, C.; Weitz, A.; Hendrich, M. P.; Collins, T. J.; Dhar, B. B.; Sen Gupta, S. Formation of a room temperature stable Fe(O) complex: Reactivity toward unactivated C-H bonds. J. Am. Chem. Soc. 2014, 136, 9524-9527.

11

Wang, B.; Lee, Y. M.; Seo, M. S.; Nam, W. Mononuclear nonheme iron(Ⅲ)-iodosylarene and high-valent iron-oxo complexes in olefin epoxidation reactions. Angew. Chem., Int. Ed. 2015, 54, 11740-11744.

12

Pattanayak, S.; Jasniewski, A. J.; Rana, A.; Draksharapu, A.; Singh, K. K.; Weitz, A.; Hendrich, M.; Que, L., Jr.; Dey, A.; Sen Gupta, S. Spectroscopic and reactivity comparisons of a pair of bTAML complexes with Fe=O and Fe=O units. Inorg. Chem. 2017, 56, 6352-6361.

13

Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 2013, 339, 307-310.

14

Sreenilayam, G.; Moore, E. J.; Steck, V.; Fasan, R. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor. ACS Catal. 2017, 7, 7629-7633.

15

Nam, W. High-valent iron(Ⅳ)-oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc. Chem. Res. 2007, 40, 522-531.

16

Bae, S. H.; Lee, Y. M.; Fukuzumi, S.; Nam, W. Fine control of the redox reactivity of a nonheme iron(Ⅲ)-peroxo complex by binding redox-inactive metal ions. Angew. Chem., Int. Ed. 2017, 56, 801-805.

17

Quesne, M. G.; Senthilnathan, D.; Singh, D.; Kumar, D.; Maldivi, P.; Sorokin, A. B.; de Visser, S. P. Origin of the enhanced reactivity of μ-nitrido-bridged diiron(Ⅳ)-oxo porphyrinoid complexes over cytochrome P450 compound I. ACS Catal. 2016, 6, 2230-2243.

18

Fillol, J. L.; Codolà, Z.; Garcia-Bosch, I.; Gómez, L.; Pla, J. J.; Costas, M. Efficient water oxidation catalysts based on readily available iron coordination complexes. Nat. Chem. 2011, 3, 807-813.

19

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577-583.

20

Cai, R.; Yang, D.; Peng, S. J.; Chen, X. G.; Huang, Y.; Liu, Y.; Hou, W. J.; Yang, S. Y.; Liu, Z. B.; Tan, W. H. Single nanoparticle to 3D supercage: Framing for an artificial enzyme system. J. Am. Chem. Soc. 2015, 137, 13957-13963.

21

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060-6093.

22

Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41-60.

23

Singh, N.; Savanur, M. A.; Srivastava, S.; D'Silva, P.; Mugesh, G. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson's disease model. Angew. Chem., Int. Ed. 2017, 56, 14267-14271.

24

Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927-2933.

25

Hu, Y. H.; Cheng, H. J.; Zhao, X. Z.; Wu, J.; Muhammad, F.; Lin, S. C.; He, J.; Zhou, L. Q.; Zhang, C. P.; Deng, Y. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558-5566.

26

Fan, K. L.; Wang, H.; Xi, J. Q.; Liu, Q.; Meng, X. Q.; Duan, D. M.; Gao, L. Z.; Yan, X. Y. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 2017, 53, 424-427.

27

Zhang, R. Z.; He, S. J.; Zhang, C. M.; Chen, W. Three-dimensional Fe- and N-incorporated carbon structures as peroxidase mimics for fluorescence detection of hydrogen peroxide and glucose. J. Mater. Chem. B 2015, 3, 4146-4154.

28

Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412-5419.

29

Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection. ACS Appl. Mater. Interfaces 2017, 9, 7465-7471.

30

Cheng, H. J.; Liu, Y. F.; Hu, Y. H.; Ding, Y. B.; Lin, S. C.; Cao, W.; Wang, Q.; Wu, J.; Muhammad, F.; Zhao, X. Z. et al. Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal. Chem. 2017, 89, 11552-11559.

31

Wei, H.; Wang, E. K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250-2254.

32

Wang, H.; Li, S.; Si, Y. M.; Sun, Z. Z.; Li, S. Y.; Lin, Y. H. Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. J. Mater. Chem. B 2014, 2, 4442-4448.

33

Wu, X. Q.; Xu, Y.; Chen, Y. L.; Zhao, H.; Cui, H. J.; Shen, J. S.; Zhang, H. -W. Peroxidase-like activity of ferric ions and their application to cysteine detection. RSC Adv. 2014, 4, 64438-64442.

34

Zhang, X. Q.; Gong, S. W.; Zhang, Y.; Yang, T.; Wang, C. Y.; Gu, N. Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J. Mater. Chem. 2010, 20, 5110-5116.

35

Zhang, W.; Hu, S. L.; Yin, J. J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860-5865.

36

Vázquez-González, M.; Torrente-Rodríguez, R. M.; Kozell, A.; Liao, W. C.; Cecconello, A.; Campuzano, S.; Pingarrón, J. M.; Willner, I. Mimicking peroxidase activities with prussian blue nanoparticles and their cyanometalate structural analogues. Nano Lett. 2017, 17, 4958-4963.

37

Grandjean, F.; Samain, L.; Long, G. J. Characterization and utilization of Prussian blue and its pigments. Dalton Trans. 2016, 45, 18018-18044.

38

Cao, L. Y.; Liu, Y. L.; Zhang, B. H.; Lu, L. H. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: Facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl. Mater. Interfaces 2010, 2, 2339-2346.

39

Risset, O. N.; Knowles, E. S.; Ma, S. Q.; Meisel, M. W.; Talham, D. R. RbjMk[Fe(CN)6]l(M = Co, Ni) prussian blue analogue hollow nanocubes: A new example of a multilevel pore system. Chem. Mater. 2013, 25, 42-47.

40

Martínez-Garcia, R.; Knobel, M.; Reguera, E. Thermal-induced changes in molecular magnets based on prussian blue analogues. J. Phys. Chem. B 2006, 110, 7296-7303.

41

Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J. Am. Chem. Soc. 2017, 139, 10790-10798.

42

Liang, H. W.; Brüller, S.; Dong, R. H.; Zhang, J.; Feng, X. L.; Müllen, K. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 2015, 6, 7992.

43

Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed. 2017, 56, 13800-13804.

44

Neyens, E.; Baeyens, J. A review of classic Fenton's peroxidation as an advanced oxidation technique. J Hazard. Mater. 2003, 98, 33-50.

File
12274_2018_2079_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 March 2018
Revised: 20 April 2018
Accepted: 22 April 2018
Published: 11 May 2018
Issue date: September 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We are grateful for the support from the National Natural Science Foundation of China (Nos. 21375123 and 21675151) and the Ministry of Science and Technology of China (Nos. 2013YQ170585 and 2016YFA0203203).

Return