Journal Home > Volume 11 , Issue 9

The promising potential of photodynamic therapy (PDT) has fueled the development of minimally invasive therapeutic approaches for cancer therapy. However, overcoming limitations in PDT efficacy in the hypoxic tumor environment and light penetration depth remains a challenge. We report the engineering of tungsten carbide nanoparticles (W2C NPs) for 1, 064 nm laser-activated dual-type PDT and combined theranostics. The synthesized W2C NPs allow the robust generation of dual-type reactive oxygen species, including hydroxyl radicals (type Ⅰ) and singlet oxygen (type Ⅱ), using only single 1, 064 nm laser activation, enabling effective PDT even in the hypoxic tumor environment. The W2C NPs also possess high photothermal performance under 1, 064 nm laser irradiation, thus enabling synergistically enhanced cancer therapeutic efficacy of PDT and photothermal therapy. Additionally, the photoacoustic and X-ray computed tomography bioimaging properties of W2C NPs facilitate the integration of tumor diagnosis and therapy. The developed W2C based theranostic nanoagents increase the generation of reactive oxygen species in hypoxic tumors, improve the light penetration depth, and facilitate combined photothermal therapy and photoacoustic/computed tomography dual-mode bioimaging. These attributes could spur the exploration of transition metal carbides for advanced biomedical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering of tungsten carbide nanoparticles for imaging-guided single 1, 064 nm laser-activated dual-type photodynamic and photothermal therapy of cancer

Show Author's information Shi-Hua Li1Wen Yang1Yang Liu1Xiao-Rong Song1Rui Liu2Guangliang Chen3Chun-Hua Lu1( )Huang-Hao Yang1( )
MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116China
College of Biological Science and EngineeringFuzhou UniversityFuzhou350116China
Department of RadiologyFujian Medical University Union HospitalNo. 29 Xinquan RoadFuzhou350001China

Abstract

The promising potential of photodynamic therapy (PDT) has fueled the development of minimally invasive therapeutic approaches for cancer therapy. However, overcoming limitations in PDT efficacy in the hypoxic tumor environment and light penetration depth remains a challenge. We report the engineering of tungsten carbide nanoparticles (W2C NPs) for 1, 064 nm laser-activated dual-type PDT and combined theranostics. The synthesized W2C NPs allow the robust generation of dual-type reactive oxygen species, including hydroxyl radicals (type Ⅰ) and singlet oxygen (type Ⅱ), using only single 1, 064 nm laser activation, enabling effective PDT even in the hypoxic tumor environment. The W2C NPs also possess high photothermal performance under 1, 064 nm laser irradiation, thus enabling synergistically enhanced cancer therapeutic efficacy of PDT and photothermal therapy. Additionally, the photoacoustic and X-ray computed tomography bioimaging properties of W2C NPs facilitate the integration of tumor diagnosis and therapy. The developed W2C based theranostic nanoagents increase the generation of reactive oxygen species in hypoxic tumors, improve the light penetration depth, and facilitate combined photothermal therapy and photoacoustic/computed tomography dual-mode bioimaging. These attributes could spur the exploration of transition metal carbides for advanced biomedical applications.

Keywords: photodynamic therapy, theranostics, metal carbides, tungsten carbide nanoparticles, near-infrared window

References(61)

1

Dolmans, D. E.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380-387.

2

Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990-2042.

3

Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795-2838.

4

Fan, W. P.; Huang, P.; Chen, X. Y. Overcoming the Achilles' heel of photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6488-6519.

5

Qian, C. G.; Yu, J. C.; Chen, Y. L.; Hu, Q. Y.; Xiao, X. Z.; Sun, W. J.; Wang, C.; Feng, P. J.; Shen, Q. D.; Gu, Z. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater. 2016, 28, 3313-3320.

6

Liang, X. L.; Li, X. D.; Jing, L. J.; Yue, X. L.; Dai, Z. F. Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy. Biomaterials 2014, 35, 6379-6388.

7

Jiang, X. P.; Zhu, N. B.; Zhao, D. H.; Ma, Y. G. New cyclometalated transition-metal based photosensitizers for singlet oxygen generation and photodynamic therapy. Sci. China Chem. 2016, 59, 40-52.

8

Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889-905.

9

Allison, R. R.; Downie, G. H.; Cuenca, R.; Hu, X. H.; Childs, C. J. H.; Sibata, C. H. Photosensitizers in clinical PDT. Photodiagnosis Photodyn. Ther. 2004, 1, 27-42.

10

Kennedy, J. C.; Marcus, S. L.; Pottier, R. H. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): Mechanisms and clinical results. J. Clin. Laser Med. Surg. 1996, 14, 289-304.

11

Soler, A. M.; Warloe, T.; Tausjo, J.; Giercksky, K. E. Photodynamic therapy of residual or recurrent basal cell carcinoma after radiotherapy using topical 5-aminolevulinic acid or methylester aminolevulinic acid. Acta Oncol. 2000, 39, 605-609.

12

Cui, S. S.; Yin, D. Y.; Chen, Y. Q.; Di, Y. F.; Chen, H. Y.; Ma, Y. X.; Achilefu, S.; Gu, Y. Q. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 2013, 7, 676-688.

13

Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

14

Deepagan, V. G.; You, D. G.; Um, W.; Ko, H.; Kwon, S.; Choi, K. Y.; Yi, G. R.; Lee, J. Y.; Lee, D. S.; Kim, K. et al. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett. 2016, 16, 6257-6264.

15

Imani, R.; Dillert, R.; Bahnemann, D. W.; Pazoki, M.; Apih, T.; Kononenko, V.; Repar, N.; Kralj-Iglic, V.; Boschloo, G.; Drobne, D. et al. Multifunctional gadolinium-doped mesoporous TiO2 nanobeads: Photoluminescence, enhanced spin relaxation, and reactive oxygen species photogeneration, beneficial for cancer diagnosis and treatment. Small 2017, 13, 1700349.

16

Mou, J.; Lin, T. Q.; Huang, F. Q.; Shi, J. L.; Chen, H. R. A new green titania with enhanced NIR absorption for mitochondria-targeted cancer therapy. Theranostics 2017, 7, 1531-1542.

17

Gilson, R. C.; Black, K. C. L.; Lane, D. D.; Achilefu, S. Hybrid TiO2-ruthenium nano-photosensitizer synergistically produces reactive oxygen species in both hypoxic and normoxic conditions. Angew. Chem., Int. Ed. 2017, 129, 10857-10860.

18

Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254-6287.

19

Kalluru, P.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W18O49 nanowires. Angew. Chem., Int. Ed. 2013, 52, 12332-12336.

20

Deng, K. R.; Hou, Z. Y.; Deng, X. R.; Yang, P. P.; Li, C. X.; Lin, J. Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure. Adv. Funct. Mater. 2015, 25, 7280-7290.

21

Vankayala, R.; Huang, Y. K.; Kalluru, P.; Chiang, C. S.; Hwang, K. C. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infrared light activation. Small 2014, 10, 1612-1622.

22

Gao, L.; Liu, R.; Gao, F. P.; Wang, Y. L.; Jiang, X. L.; Gao, X. Y. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 2014, 8, 7260-7271.

23

Xu, J. T.; Yang, P. P.; Sun, M. D.; Bi, H. T.; Liu, B.; Yang, D.; Gai, S. L.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 2017, 11, 4133-4144.

24

Idris, N. M.; Jayakumar, M. K. G.; Bansal, A.; Zhang, Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev. 2015, 44, 1449-1478.

25

Li, Y.; Tang, J. L.; Pan, D. X.; Sun, L. D.; Chen, C. Y.; Liu, Y.; Wang, Y. F.; Shi, S.; Yan, C. H. A versatile imaging and therapeutic platform based on dual-band luminescent lanthanide nanoparticles toward tumor metastasis inhibition. ACS Nano 2016, 10, 2766-2773.

26

Vijayaraghavan, P.; Liu, C. H.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv. Mater. 2014, 26, 6689-6695.

27

Guo, W.; Guo, C. S.; Zheng, N. N.; Sun, T. D.; Liu, S. Q. CsxWO3 nanorods coated with polyelectrolyte multilayers as a multifunctional nanomaterial for bimodal imaging-guided photothermal/photodynamic cancer treatment. Adv. Mater. 2017, 29, 1604157.

28

Bashkatov, A. N.; Genina, E. A.; Kochubey, V. I.; Tuchin, V. V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D: Appl. Phys. 2005, 38, 2543-2555.

29

Levy, R. B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973, 181, 547-549.

30

Bennett, L. H.; Cuthill, J. R.; McAlister, A. J.; Erickson, N. E.; Watson, R. E. Electronic structure and catalytic behavior of tungsten carbide. Science 1974, 184, 563-565.

31

Chen, J. G. Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities. Chem. Rev. 1996, 96, 1477-1498.

32

Gong, Q. F.; Wang, Y.; Hu, Q.; Zhou, J. G.; Feng, R. F.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Li, Y. F. et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nat. Commun. 2016, 7, 13216.

33

Xuan, J. N.; Wang, Z. Q.; Chen, Y. Y.; Liang, D. J.; Cheng, L.; Yang, X. J.; Liu, Z.; Ma, R. Z.; Sasaki, T.; Geng, F. X. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem., Int. Ed. 2016, 55, 14569-14574.

34

Lee, Y.; Lee, H.; Kim, Y. B.; Kim, J.; Hyeon, T.; Park, H.; Messersmith, P. B.; Park, T. G. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv. Mater. 2008, 20, 4154-4157.

35

Choi, K. Y.; Yoon, H. Y.; Kim, J. H.; Bae, S. M.; Park, R. W.; Kang, Y. M.; Kim, I. S.; Kwon, I. C.; Choi, K.; Jeong, S. Y. et al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 2011, 5, 8591-8599.

36

Chen, Z. W.; Li, Z. H.; Wang, J. S.; Ju, E. G.; Zhou, L.; Ren, J. S.; Qu, X. G. A multi-synergistic platform for sequential irradiation-activated high-performance apoptotic cancer therapy. Adv. Funct. Mater. 2014, 24, 522-529.

37

Li, H.; Jia, Y.; Wang, A. H.; Cui, W.; Ma, H. C.; Feng, X. Y.; Li, J. B. Self-assembly of hierarchical nanostructures from dopamine and polyoxometalate for oral drug delivery. Chem. -Eur. J. 2014, 20, 499-504.

38

Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H. J.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem., Int. Ed. 2011, 50, 6799-6802.

39

Lin, L. S.; Cong, Z. X.; Li, J.; Ke, K. M.; Guo, S. S.; Yang, H. H.; Chen, G. N. Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. J. Mater. Chem. B 2014, 2, 1031-1037.

40

Barybin, M. V.; Chisholm, M. H.; Patmore, N. J.; Robinson, R. E.; Singh, N. Concerning the molecular and electronic structure of a tungsten-tungsten quadruply bonded complex supported by two 6-carboethoxy-2-carboxylatoazulene ligands. Chem. Commun. 2007, 3652-3664.

41

Li, W. Z.; Li, J.; Wang, X.; Ma, J.; Chen, Q. Y. Effect of citric acid on photoelectrochemical properties of tungsten trioxide films prepared by the polymeric precursor method. Appl. Surf. Sci. 2010, 256, 7077-7082.

42

Bai, S. L.; Zhang, K. W.; Shu, X.; Chen, S.; Luo, R. X.; Li, D. Q.; Chen, A. F. Carboxyl-directed hydrothermal synthesis of WO3 nanostructures and their morphology-dependent gas-sensing properties. CrystEngComm 2014, 16, 10210-10217.

43

Wu, Z. X.; Yang, Y. X.; Gu, D.; Li, Q.; Feng, D.; Chen, Z. X.; Tu, B.; Webley, P. A.; Zhao, D. Y. Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route. Small 2009, 5, 2738-2749.

44

Xu, Y. -T.; Xiao, X. F.; Ye, Z. -M.; Zhao, S. L.; Shen, R. G.; He, C. -T.; Zhang, J. -P.; Li, Y. D.; Chen, X. -M. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 5285-5288.

45

Wang, Y. L.; Nie, T.; Li, Y. H.; Wang, X. L.; Zheng, L. R.; Chen, A. P.; Gong, X. Q.; Yang, H. G. Black tungsten nitride as a metallic photocatalyst for overall water splitting operable at up to 765 nm. Angew. Chem., Int. Ed. 2017, 56, 7430-7434.

46

Hu, Z. F.; Liu, G.; Chen, X. Q.; Shen, Z. R.; Yu, J. C. Enhancing charge separation in metallic photocatalysts: A case study of the conducting molybdenum dioxide. Adv. Funct. Mater. 2016, 26, 4445-4455.

47

Xu, X. X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. S. A red metallic oxide photocatalyst. Nat. Mater. 2012, 11, 595-598.

48

Tao, W.; Ji, X. Y.; Xu, X. D.; Islam, M. A.; Li, Z. J.; Chen, S.; Saw, P. E.; Zhang, H.; Bharwani, Z.; Guo, Z. L. et al. Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem., Int. Ed. 2017, 56, 11896-11900.

49

Song, X. R.; Li, S. H.; Dai, J. Y.; Song, L.; Huang, G. M.; Lin, R. H.; Li, J.; Liu, G.; Yang, H. H. Polyphenol-inspired facile construction of smart assemblies for ATP- and pH-responsive tumor MR/optical imaging and photothermal therapy. Small 2017, 13, 1603997.

50

Guo, C. S.; Yu, H. J.; Feng, B.; Gao, W. D.; Yan, M.; Zhang, Z. W.; Li, Y. P.; Liu, S. Q. Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent. Biomaterials 2015, 52, 407-416.

51

Xu, M. H.; Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101.

52

De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T. J.; Oralkan, O. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557-562.

53

Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285-3291.

54

Lin, L. S.; Yang, X. Y.; Zhou, Z. J.; Yang, Z.; Jacobson, O.; Liu, Y. J.; Yang, A.; Liu, G.; Song, J. B.; Yang, H. H. et al. Yolk-shell nanostructure: An ideal architecture to achieve harmonious integration of magnetic-plasmonic hybrid theranostic platform. Adv. Mater. 2017, 29, 1606681.

55

Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886-1893.

56

Dong, K.; Liu, Z.; Liu, J. H.; Huang, S.; Li, Z. H.; Yuan, Q. H.; Ren, J. S.; Qu, X. G. Biocompatible and high-performance amino acids-capped MnWO4 nanocasting as a novel non-lanthanide contrast agent for X-ray computed tomography and T1-weighted magnetic resonance imaging. Nanoscale 2014, 6, 2211-2217.

57

Tian, G.; Zhang, X.; Zheng, X. P.; Yin, W. Y.; Ruan, L. F.; Liu, X. D.; Zhou, L. J.; Yan, L.; Li, S. J.; Gu, Z. J. et al. Multifunctional RbxWO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging. Small 2014, 10, 4160-4170.

58

Luo, Y.; Ziebell, M. R.; Prestwich, G. D. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules 2000, 1, 208-218.

59

He, Q. J.; Ma, M.; Wei, C. Y.; Shi, J. L. Mesoporous carbon@silicon-silica nanotheranostics for synchronous delivery of insoluble drugs and luminescence imaging. Biomaterials 2012, 33, 4392-4402.

60

Lepock, J. R. Cellular effects of hyperthermia: Relevance to the minimum dose for thermal damage. Int. J. Hyperthermia 2003, 19, 252-266.

61

Ahmed, M.; Brace, C. L.; Lee, F. T., Jr.; Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 2011, 258, 351-369.

File
12274_2018_2075_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 February 2018
Revised: 09 April 2018
Accepted: 13 April 2018
Published: 09 May 2018
Issue date: September 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. U1505221, 21635002, 21475026, 21775025, and U1705281), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT15R11), and the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (No. 2014B02).

Return