Journal Home > Volume 11 , Issue 10

Owing to their unique pattern and abundant chemical composition, latent fingerprints (LFPs) can serve as "ID cards" and "information banks" of donors and therefore are valuable for forensic investigation, access control, and even medical diagnosis. LFP imaging has attracted considerable attention, and a great variety of contrast agents has been developed. In LFP imaging, background signals such as background fluorescence from the underlying surface can seriously blur the LFP images and decrease imaging sensitivity; thus, great efforts have been made to eliminate background interference. Here, we stratify the recent progress in background-free LFP imaging by making use of the difference in properties between contrast agents and background compounds. For example, near-infrared (NIR) light-activatable contrast agents can efficiently remove background signals in LFP imaging because the background compounds cannot be excited by NIR light, showing that the difference in excitation properties between contrast agents and background compounds can be employed to eliminate background interference. This review is organized around background-free LFP imaging based on the difference in optical properties between contrast agents and background compounds: (i) different excitation wavelengths, (ii) different emission wavelengths, (iii) different luminescence lifetime values, (iv) different plasmonic properties, (v) different photothermal properties, and (vi) different electrochemiluminescence properties.


menu
Abstract
Full text
Outline
About this article

Recent progress in background-free latent fingerprint imaging

Show Author's information Yingqian WangJie WangQinqin MaZhihao LiQuan Yuan( )
Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China

Abstract

Owing to their unique pattern and abundant chemical composition, latent fingerprints (LFPs) can serve as "ID cards" and "information banks" of donors and therefore are valuable for forensic investigation, access control, and even medical diagnosis. LFP imaging has attracted considerable attention, and a great variety of contrast agents has been developed. In LFP imaging, background signals such as background fluorescence from the underlying surface can seriously blur the LFP images and decrease imaging sensitivity; thus, great efforts have been made to eliminate background interference. Here, we stratify the recent progress in background-free LFP imaging by making use of the difference in properties between contrast agents and background compounds. For example, near-infrared (NIR) light-activatable contrast agents can efficiently remove background signals in LFP imaging because the background compounds cannot be excited by NIR light, showing that the difference in excitation properties between contrast agents and background compounds can be employed to eliminate background interference. This review is organized around background-free LFP imaging based on the difference in optical properties between contrast agents and background compounds: (i) different excitation wavelengths, (ii) different emission wavelengths, (iii) different luminescence lifetime values, (iv) different plasmonic properties, (v) different photothermal properties, and (vi) different electrochemiluminescence properties.

Keywords: nanoparticles, upconversion, persistent luminescence, background interference, latent fingerprints

References(123)

1

Hazarika, P.; Russell, D. A. Advances in fingerprint analysis. Angew. Chem., Int. Ed. 2012, 51, 3524–3531.

2

Rastogi, P.; Pillai, K. R. A study of fingerprints in relation to gender and blood group. J. Indian Acad. Forensic Med. 2010, 32, 11–14.

3

Wei, Q. H.; Zhang, M. Q.; Ogorevc, B.; Zhang, X. J. Recent advances in the chemical imaging of human fingermarks (a review). Analyst 2016, 141, 6172–6189.

4

Ewing, A. V.; Kazarian, S. G. Infrared spectroscopy and spectroscopic imaging in forensic science. Analyst 2017, 142, 257–272.

5

Bécue, A. Emerging fields in fingermark (meta)detection—A critical review. Anal. Methods 2016, 8, 7983–8003.

6

Cadd, S.; Islam, M.; Manson, P.; Bleay, S. Fingerprint composition and aging: A literature review. Sci. Justice 2015, 55, 219–238.

7

Comi, T. J.; Ryu, S. W.; Perry, R. H. Synchronized desorption electrospray ionization mass spectrometry imaging. Anal. Chem. 2016, 88, 1169–1175.

8

Cortés-Salazar, F.; Momotenko, D.; Girault, H. H. Lesch, A.; Wittstock, G. Seeing big with scanning electrochemical microscopy. Anal. Chem. 2011, 83, 1493–1499.

9

Ricci, C.; Bleay, S.; Kazarian, S. G. Spectroscopic imaging of latent fingermarks collected with the aid of a gelatin tape. Anal. Chem. 2007, 79, 5771–5776.

10

Kelly, P. F.; King, R. S. P.; Mortimer, R. J. Fingerprint and inkjet-trace imaging using disulfur dinitride. Chem. Commun. 2008, 6111–6113.

11

Zhang, M. Q.; Becue, A.; Prudent, M.; Champod, C.; Girault, H. H. SECM imaging of MMD-enhanced latent fingermarks. Chem. Commun. 2007, 3948–3950.

12

Menzel, E. R. Recent advances in photoluminescence detection of fingerprints. Sci. World J. 2001, 1, 498–509.

13

Chadwick, S.; Maynard, P.; Kirkbride, P.; Lennard, C.; Spindler, X.; Roux, C. Use of Styryl 11 and STaR 11 for the luminescence enhancement of cyanoacrylate developed fingermarks in the visible and near-infrared regions. J. Forensic Sci. 2011, 56, 1505–1513.

14

Fernandes, D.; Krysmann, M. J.; Kelarakis, A. Carbon dot based nanopowders and their application for fingerprint recovery. Chem. Commun. 2015, 51, 4902–4905.

15

Li, B. -Y.; Zhang, X. -L.; Zhang, L. -Y.; Wang, T. -T.; Li, L.; Wang, C. -G.; Su, Z. -M. NIR-responsive NaYF4: Yb, Er, Gd fluorescent upconversion nanorods for the highly sensitive detection of blood fingerprints. Dyes Pigm. 2016, 134, 178–185.

16

Wang, J.; Wei, Y. R.; Hu, X. X.; Fang, Y. -Y.; Li, X. Y.; Liu, J.; Wang, S. F.; Yuan, Q. Protein activity regulation: Inhibition by closed-loop aptamer-based structures and restoration by near-IR stimulation. J. Am. Chem. Soc. 2015, 137, 10576–10584.

17

Yuan, Q.; Wu, Y.; Wang, J.; Lu, D. Q.; Zhao, Z. L.; Liu, T.; Zhang, X. B.; Tan, W. H. Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier and near-infrared light. Angew. Chem., Int. Ed. 2013, 52, 13965–13969.

18

Hu, X. X.; Wei, T.; Wang, J.; Liu, Z. -E.; Li, X. Y.; Zhang, B. H.; Li, Z. H.; Li, L. L.; Yuan, Q. Near-infrared-light mediated ratiometric luminescent sensor for multimode visualized assays of explosives. Anal. Chem. 2014, 86, 10484–10491.

19

Liu, Z. -E.; Wang, J.; Li, Y.; Hu, X. X.; Yin, J. W.; Peng, Y. Q.; Li, Z. H.; Li, Y. W.; Li, B. M.; Yuan, Q. Near-infrared light manipulated chemoselective reductions enabled by an upconversional supersandwich nanostructure. ACS Appl. Mater. Interfaces 2015, 7, 19416–19423.

20

Ma, Q. Q.; Wang, J.; Li, Z. H.; Wang, D.; Hu, X. X.; Xu, Y. S.; Yuan, Q. Near-infrared-light-mediated high-throughput information encryption based on the inkjet printing of upconversion nanoparticles. Inorg. Chem. Front. 2017, 4, 1166–1172.

21

Tan, Y. N.; Hu, X. X.; Liu, M.; Liu, X. W.; Lv, X. B.; Li, Z. H.; Wang, J.; Yuan, Q. Simultaneous visualization and quantitation of multiple steroid hormones based on signalamplified biosensing with duplex molecular recognition. Chem. —Eur. J. 2017, 23, 10683–10689.

22

Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.

23

Wang, M.; Zhu, Y.; Mao, C. B. Synthesis of NIR-responsive NaYF4: Yb, Er upconversion fluorescent nanoparticles using an optimized solvothermal method and their applications in enhanced development of latent fingerprints on various smooth substrates. Langmuir 2015, 31, 7084–7090.

24

Wang, J.; Wei, T.; Li, X. Y.; Zhang, B. H.; Wang, J. X.; Huang, C.; Yuan, Q. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. Angew. Chem., Int. Ed. 2014, 53, 1616–1620.

25

Wang, M. Latent fingermarks light up: Facile development of latent fingermarks using NIR-responsive upconversion fluorescent nanocrystals. RSC Adv. 2016, 6, 36264–36268.

26

Li, J. C.; Zhu, X. J.; Xue, M.; Feng, W.; Ma, R. L.; Li, F. Y. Nd3+-sensitized upconversion nanostructure as a dual-channel emitting optical probe for near infrared-to-near infrared fingerprint imaging. Inorg. Chem. 2016, 55, 10278–10283.

27

Wang, M.; Li, M.; Yang, M. Y.; Zhang, X. M.; Yu, A. Y.; Zhu, Y.; Qiu, P. H.; Mao, C. B. NIR-induced highly sensitive detection of latent fingermarks by NaYF4: Yb, Er upconversion nanoparticles in a dry powder state. Nano Res. 2015, 8, 1800–1810.

28

Tiwari, S. P.; Kumar, K.; Rai, V. K. Latent fingermarks detection for La2O3: Er3+/Yb3+ phosphor material in upconversion emission mode: A comparative study. J. Appl. Phys. 2015, 118, 183109.

29

Zhou, D. L.; Li, D. Y.; Zhou, X. Y.; Xu, W.; Chen, X.; Liu, D. L.; Zhu, Y. S.; Song, H. W. Semiconductor plasmon induced up-conversion enhancement in mCu2–xS@SiO2@ Y2O3: Yb3+/Er3+ core–shell nanocomposites. ACS Appl. Mater. Interfaces 2017, 9, 35226–35233.

30

Chen, X.; Xu, W.; Zhang, L. H.; Bai, X.; Cui, S. B.; Zhou, D. L.; Yin, Z.; Song, H. W.; Kim, D. -H. Large upconversion enhancement in the "Islands" Au–Ag alloy/NaYF4: Yb3+, Tm3+/Er3+ composite films, and fingerprint identification. Adv. Funct. Mater. 2015, 25, 5462–5471.

31

Xie, H. -H.; Wen, Q.; Huang, H.; Sun, T. -Y.; Li, P. H.; Li, Y.; Yu, X. -F.; Wang, Q. -Q. Synthesis of bright upconversion submicrocrystals for high-contrast imaging of latentfingerprints with cyanoacrylate fuming. RSC Adv. 2015, 5, 79525–79531.

32

Hong, S.; Kim, M.; Yu, S. Latent fingermark development on thermal paper using 1, 2-indanedione/zinc and polyvinylpyrrolidone. J. Forensic Sci. 2018, 63, 548–555.

33

Brunelle, E.; Huynh, C.; Le, A. M.; Halámková, L.; Agudelo, J.; Halámek, J. New horizons for ninhydrin: Colorimetric determination of gender from fingerprints. Anal. Chem. 2016, 88, 2413–2420.

34

Berdejo, S.; Rowe, M.; Bong, J. W. Latent fingermark development on a range of porous substrates using ninhydrin analogs—A comparison with ninhydrin and 1, 8-diazofluoren. J. Forensic Sci. 2012, 57, 509–514.

35

Patton, E. L. T.; Brown, D. H. Lewis, S. W. Detection of latent fingermarks on thermal printer paper by dry contact with 1, 2-indanedione. Anal. Methods 2010, 2, 631–637.

36

Thomas, P.; Farrugia, K. An investigation into the enhancement of fingermarks in blood on paper with genipin and lawsone. Sci. Justice 2013, 53, 315–320.

37

Jelly, R.; Lewis, S. W.; Lennard, C.; Lim, K. F.; Almog, J. Lawsone: A novel reagent for the detection of latent fingermarks on paper surfaces. Chem. Commun. 2008, 3513–3515.

38

Fritz, P.; van Bronswijk, W.; Lewis, S. W. p-Dimethylaminobenzaldehyde: Preliminary investigations into a novel reagent for the detection of latent fingermarks on paper surfaces. Anal. Methods 2013, 5, 3207–3215.

39

Wood, M.; Maynard, P.; Spindler, X.; Lennard, C.; Roux, C. Visualization of latent fingermarks using an aptamer-based reagent. Angew. Chem., Int. Ed. 2012, 51, 12272–12274.

40

Frick, A. A.; Busetti, F.; Cross, A.; Lewis, S. W. Aqueous Nile blue: A simple, versatile and safe reagent for the detection of latent fingermarks. Chem. Commun. 2014, 50, 3341–3343.

41

Qi, A.; Miskelly, G. M. Staining using the lipid dye LD540 in fluorous media: Application to sebaceous latent fingermarks. Anal. Methods 2015, 7, 1265–1268.

42

Li, Y.; Xu, L. R.; Su, B. Aggregation induced emission for the recognition of latent fingerprints. Chem. Commun. 2012, 48, 4109–4111.

43

Xu, L. R.; Li, Y.; Li, S. H.; Hu, R. R.; Qin, A. J.; Tang, B. Z.; Su, B. Enhancing the visualization of latent fingerprints by aggregation induced emission of siloles. Analyst 2014, 139, 2332–2335.

44

Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

45

Jin, X. D.; Dong, L. B.; Di, X. Y.; Huang, H.; Liu, J. N.; Sun, X. L.; Zhang, X. Q.; Zhu, H. J. NIR luminescence for the detection of latent fingerprints based on ESIPT and AIE processes. RSC Adv. 2015, 5, 87306–87310.

46

Jin, X. D.; Xin, R.; Wang, S. F.; Yin, W. Z.; Xu, T. X.; Jiang, Y.; Ji, X. R.; Chen, L. Y.; Liu, J. N. A tetraphenylethenebased dye for latent fingerprint analysis. Sensor. Actuat. B: Chem. 2017, 244, 777–784.

47

Malik, A. H.; Kalita, A.; Iyer, P. K. Development of wellpreserved, substrate-versatile latent fingerprints by aggregationinduced enhanced emission-active conjugated polyelectrolyte. ACS Appl. Mater. Interfaces 2017, 9, 37501–37508.

48

Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112, 4687–4735.

49

Bentolila, A.; Totre, J.; Zozulia, I.; Levin-Elad, M.; Domb, A. J. Fluorescent cyanoacrylate monomers and polymers for fingermark development. Macromolecules 2013, 46, 4822–4828.

50

Lee, J.; Pyo, M.; Lee, S. -H.; Kim, J.; Ra, M.; Kim, W. -Y.; Park, B. J.; Lee, C. W.; Kim, J. -M. Hydrochromic conjugated polymers for human sweat pore mapping. Nat. Commun. 2014, 5, 3736.

51

Locard, E. Les Pores et L'identification des criminels. Biologica: Revue Scientifique de Medicine 1912, 2, 357–365.

52

Kwak, G.; Lee, W. -E.; Kim, W. -H.; Lee, H. Fluorescence imaging of latent fingerprints on conjugated polymer films with large fractional free volume. Chem. Commun. 2009, 2112–2114.

53

Chen, H. B.; Chang, K. W.; Men, X. J.; Sun, K.; Fang, X. F.; Ma, C.; Zhao, Y. X.; Yin, S. Y.; Qin, W. P.; Wu, C. F. Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces 2015, 7, 14477–14484.

54

Chen, Y. -H.; Kuo, S. -Y.; Tsai, W. -K.; Ke, C. -S.; Liao, C. -H.; Chen, C. -P.; Wang, Y. -T.; Chen, H. -W.; Chan, Y. -H. Dual colorimetric and fluorescent imaging of latent fingerprints on both porous and nonporous surfaces with near-infrared fluorescent semiconducting polymer dots. Anal. Chem. 2016, 88, 11616–11623.

55

Park, D. -H.; Park, B. J.; Kim, J. -M. Hydrochromic approaches to mapping human sweat pores. Acc. Chem. Res. 2016, 49, 1211–1222.

56

Yoon, J. -H.; Jin, Y. -J.; Sakaguchi, T.; Kwak, G. Visualization of sweat fingerprints on various surfaces using a conjugated polyelectrolyte. ACS Appl. Mater. Interfaces 2016, 8, 24025–24029.

57

Lee, J.; Lee, C. W.; Kim, J. -M. A magnetically responsive polydiacetylene precursor for latent fingerprint analysis. ACS Appl. Mater. Interfaces 2016, 8, 6245–6251.

58

Kim, B. S.; Jin, Y. -J.; Uddin, M. A.; Sakaguchi, T.; Woo, H. Y.; Kwak, G. Surfactant chemistry for fluorescence imaging of latent fingerprints using conjugated polyelectrolyte nanoparticles. Chem. Commun. 2015, 51, 13634–13637.

59

Pyo, M.; Lee, J.; Baek, W.; Lee, C. W.; Park, B. J. Kim, J. -M. Sweat pore mapping using a fluorescein-polymer composite film for fingerprint analysis. Chem. Commun. 2015, 51, 3177–3180.

60

Yang, S. Y.; Wang, C. -F.; Chen, S. A release-induced response for the rapid recognition of latent fingerprints and formation of inkjet-printed patterns. Angew. Chem., Int. Ed. 2011, 50, 3706–3709.

61

Zhang, S. J.; Liu, R. H.; Cui, Q. L.; Yang, Y.; Cao, Q.; Xu, W. Q.; Li, L. D. Ultrabright fluorescent silica nanoparticles embedded with conjugated oligomers and their application in latent fingerprint detection. ACS Appl. Mater. Interfaces 2017, 9, 44134–44145.

62

Kim, Y. -J.; Jung, H. -S.; Lim, J.; Ryu, S. -J.; Lee, J. -K. Rapid imaging of latent fingerprints using biocompatible fluorescent silica nanoparticles. Langmuir 2016, 32, 8077–8083.

63

Cho, E. C.; Glaus, C.; Chen, J. Y.; Welch, M. J.; Xia, Y. N. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol. Med. 2010, 16, 561-573.

64

Leggett, R.; Lee-Smith, E. E.; Jickells, S. M.; Russell, D. A. "Intelligent" fingerprinting: Simultaneous identification of drug metabolites and individuals by using antibodyfunctionalized nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 4100–4103.

65

Menzel, E. R.; Takatsu, M.; Murdock, R. H.; Bouldin, K.; Cheng, K. H. Photoluminescent CdS/dendrimer nanocomposites for fingerprint detection. J. Forensic Sci. 2000, 45, 770–773.

66

Xu, C. Y.; Zhao, R. H.; He, W. W.; Wu, L.; Wu, P.; Hou, X. D. Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs. Anal. Chem. 2014, 86, 3279–3283.

67

Gao, F.; Lv, C. F.; Han, J. X.; Li, X. Y.; Wang, Q.; Zhang, J.; Chen, C.; Li, Q.; Sun, X. F.; Zheng, J. C. et al. CdTe–montmorillonite nanocomposites: Control synthesis, UV radiation-dependent photoluminescence, and enhanced latent fingerprint detection. J. Phys. Chem. C 2011, 115, 21574–21583.

68

Cai, K. Y.; Yang, R. Q.; Wang, Y. J.; Yu, X. J.; Liu, J. J. Super fast detection of latent fingerprints with water soluble CdTe quantum dots. Forensic Sci. Int. 2013, 226, 240–243.

69

Moret, S.; Bécue, A.; Champod, C. Cadmium-free quantum dots in aqueous solution: Potential for fingermark detection, synthesis and an application to the detection of fingermarks in blood on non-porous surfaces. Forensic Sci. Int. 2013, 224, 101–110.

70

Algarra, M.; Jiménez-Jiménez, J.; Miranda, M. S.; Campos, B. B.; Moreno-Tost, R.; Rodriguez-Castellón, E.; Esteves da Silva, J. C. G. Solid luminescent CdSe-thiolated porous phosphate heterostructures. Application in fingermark detection in different surfaces. Surf. Interface Anal. 2013, 45, 612–618.

71

Wu, P.; Hou, X. D.; Xu, J. -J.; Chen, H. -Y. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale 2016, 8, 8427-8442.

72

Li, Y. Q.; Xu, C. Y.; Shu, C.; Hou, X. D.; Wu, P. Simultaneous extraction of level 2 and level 3 characteristics from latent fingerprints imaged with quantum dots for improved fingerprint analysis. Chin. Chem. Lett. 2017, 28, 1961-1964.

73

Qu, S. N.; Wang, X. Y.; Lu, Q. P.; Liu, X. Y.; Wang, L. J. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem., Int. Ed. 2012, 51, 12215-12218.

74

Chen, J.; Wei, J. -S.; Zhang, P.; Niu, X. -Q.; Zhao, W.; Zhu, Z. -Y.; Ding, H.; Xiong, H. -M. Red-emissive carbon dots for fingerprints detection by spray method: Coffee ring effect and unquenched fluorescence in drying process. ACS Appl. Mater. Interfaces 2017, 9, 18429–18433.

75

Dilag, J.; Kobus, H.; Yu, Y.; Gibson, C. T.; Ellis, A. V. Non-toxic luminescent carbon dot/poly (dimethylacrylamide) nanocomposite reagent for latent fingermark detection synthesized via surface initiated reversible addition fragmentation chain transfer polymerization. Polym. Int. 2015, 64, 884–891.

76

Zhao, Y. -B.; Ma, Y. -J.; Song, D.; Liu, Y.; Luo, Y. P.; Lin, S.; Liu, C. -Y. New luminescent nanoparticles based on carbon dots/SiO2 for the detection of latent fingermarks. Anal. Methods 2017, 9, 4770–4775.

77

Wu, P.; Xu, C. Y.; Hou, X. D.; Xu, J. -J.; Chen, H. -Y. Dualemitting quantum dot nanohybrid for imaging of latent fingerprints: Simultaneous identification of individuals and traffic light-type visualization of TNT. Chem. Sci. 2015, 6, 4445–4450.

78

Dilag, J.; Kobus, H.; Ellis, A. V. Cadmium sulfide quantum dot/chitosan nanocomposites for latent fingermark detection. Forensic Sci. Int. 2009, 187, 97–102.

79

Ranjan, S; Jayakumar, M. K. G.; Zhang, Y. Luminescent lanthanide nanomaterials: An emerging tool for theranostic applications. Nanomedicine 2015, 10, 1477–1491.

80

Wang, M.; Li, M.; Yu, A. Y.; Wu, J.; Mao, C. B. Rare earth fluorescent nanomaterials for enhanced development of latent fingerprints. ACS Appl. Mater. Interfaces 2015, 7, 28110–28115.

81

Chen, C. L.; Yu, Y.; Li, C. G.; Liu, D.; Huang, H.; Liang, C.; Lou, Y.; Han, Y.; Shi, Z.; Feng, S. H. Facile synthesis of highly water-soluble lanthanide-doped t-LaVO4NPs for antifake ink and latent fingermark detection. Small 2017, 13, 1702305.

82

Tedstone, A. A.; Lewis, D. J.; O′Brien, P. Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem. Mater. 2016, 28, 1965–1974.

83

Wu, P.; Pan, J. -B.; Li, X. -L.; Hou, X. D.; Xu, J. -J.; Chen, H. -Y. Long-lived charge carriers in Mn-doped CdS quantum dots for photoelectrochemical cytosensing. Chem. —Eur. J. 2015, 21, 5129–5135.

84

Wang, J.; Ma, Q. Q.; Liu, H. Y.; Wang, Y. Q.; Shen, H. J.; Hu, X. X.; Ma, C.; Yuan, Q.; Tan, W. H. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition. Anal. Chem. 2017, 89, 12764–12770.

85

Mathew, A.; Pradeep, T. Noble metal clusters: Applications in energy, environment, and biology. Part. Part. Syst. Charact. 2014, 31, 1017–1053.

86

Teng, Y.; Jia, X. F.; Zhang, S.; Zhu, J. B.; Wang, E. K. A nanocluster beacon based on the template transformation of DNA-templated silver nanoclusters. Chem. Commun. 2016, 52, 1721–1724.

87

Ran, X.; Wang, Z. Z.; Zhang, Z. J.; Pu, F.; Ren, J. S.; Qu, X. G. Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances. Chem. Commun. 2016, 52, 557–560.

88

Becue, A.; Scoundrianos, A.; Champod, C.; Margot, P. Fingermark detection based on the in situ growth of luminescent nanoparticles—Towards a new generation of multimetal deposition. Forensic Sci. Int. 2008, 179, 39–43.

89

Jaber, N.; Lesniewski, A.; Gabizon, H.; Shenawi, S.; Mandler, D.; Almog, J. Visualization of latent fingermarks by nanotechnology: Reversed development on paper—A remedy to the variation in sweat composition. Angew. Chem., Int. Ed. 2012, 51, 12224–12227.

90

He, Y. Y.; Xu, L. R.; Zhu, Y.; Wei, Q. H.; Zhang, M. Q.; Su, B. Immunological multimetal deposition for rapid visualization of sweat fingerprints. Angew. Chem., Int. Ed. 2014, 53, 12609–12612.

91

van Dam, A.; Aalders, M. C. G.; van Leeuwen, T. G.; Lambrechts, S. A. G. The compatibility of fingerprint visualization techniques with immunolabeling. J. Forensic Sci. 2013, 58, 999–1002.

92

van Dam, A.; van Nes, K. A.; Aalders, M. C. G.; van Leeuwen, T. G.; Lambrechts, S. A. G. Immunolabeling of fingermarks left on forensic relevant surfaces, including thermal paper. Anal. Methods 2014, 6, 1051–1058.

93

Spindler, X.; Hofstetter, O.; McDonagh, A. M.; Roux, C.; Lennard, C. Enhancement of latent fingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles. Chem. Commun. 2011, 47, 5602–5604.

94

Hazarika, P.; Jickells, S. M.; Wolff, K.; Russell, D. A. Imaging of latent fingerprints through the detection of drugs and metabolites. Angew. Chem., Int. Ed. 2008, 47, 10167–10170.

95

Hazarika, P.; Jickells, S. M.; Wolff, K.; Russell, D. A. Multiplexed detection of metabolites of narcotic drugs from a single latent fingermark. Anal. Chem. 2010, 82, 9150–9154.

96

Hazatika, P.; Jickells, S. M.; Russell, D. A. Rapid detection of drug metabolites in latent fingermarks. Analyst 2009, 134, 93–96.

97

Boddis, A. M.; Russell, D. A. Simultaneous development and detection of drug metabolites in latent fingermarks using antibody–magnetic particle conjugates. Anal. Methods 2011, 3, 519–523.

98

Boddis, A. M.; Russell, D. A. Development of aged fingermarks using antibody-magnetic particle conjugates. Anal. Methods 2012, 4, 637–641.

99

Akiba, N.; Kuroki, K.; Kurosawa, K.; Tsuchiya, K. Visualization of aged fingerprints with an ultraviolet laser. J. Forensic Sci. 2018, 63, 556–562.

100

Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+. J. Electrochem. Soc. 1996, 143, 2670–2673.

101

Li, Y.; Gecevicius, M.; Qiu, J. R. Long persistent phosphors—From fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136.

102

Li, Z. J.; Zhang, Y. W.; Wu, X.; Huang, L.; Li, D. S.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm "luminous pearls" with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 2015, 137, 5304–5307.

103

Wang, J.; Ma, Q. Q.; Hu, X. -X.; Liu, H. Y.; Zheng, W.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 2017, 11, 8010–8017.

104

Wang, J.; Ma, Q. Q.; Zheng, W.; Liu, H. Y.; Yin, C. Q.; Wang, F. B.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Onedimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 2017, 11, 8185–8191.

105

Wang, J.; Ma, Q. Q.; Wang, Y. Q.; Shen, H. J.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 2017, 9, 6204–6218.

106

Liu, H. Y.; Hu, X. X.; Wang, J.; Liu, M.; Wei, W.; Yuan, Q. Direct low-temperature synthesis of ultralong persistent luminescence nanobelts based on a biphasic solutionchemical reaction. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2018.02.005

107

Baffou, G.; Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 2014, 43, 3898–3907.

108

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

109

Li, K.; Qin, W. W.; Li, F.; Zhao, X. C.; Jiang, B. W.; Wang, K.; Deng, S. H.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angew. Chem., Int. Ed. 2013, 52, 11542–11545.

110

Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.

111

Song, K.; Huang, P.; Yi, C. L.; Ning, B.; Hu, S.; Nie, L. M.; Chen, X. Y.; Nie, Z. H. Photoacoustic and colorimetric visualization of latent fingerprints. ACS Nano 2015, 9, 12344–12348.

112

Peng, T. H.; Qin, W. W.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints with explosive RDX residues. Anal. Chem. 2015, 87, 9403–9407.

113

Li, W. W.; Chen, X. Y. Gold nanoparticles for photoacoustic imaging. Nanomedicine 2015, 10, 299–320.

114

Zhao, L.; Wang, W.; Hu, W. H. Simultaneous transfer and imaging of latent fingerprints enabled by interfacial separation of polydopamine thin film. Anal. Chem. 2016, 88, 10357–10361.

115

Zhao, L.; Huang, X. Q.; Hu, W. H. Interfacial separationenabled all-dry approach for simultaneous visualization, transfer, and enhanced Raman analysis of latent fingerprints. ACS Appl. Mater. Interfaces 2017, 9, 37350–37356.

116

Zhang, Y. Y.; Zhou, W.; Xue, Y.; Yang, J.; Liu, D. B. Multiplexed imaging of trace residues in a single latent fingerprint. Anal. Chem. 2016, 88, 12502–12507.

117

Zhao, J. J.; Zhang, K.; Li, Y. X.; Ji, J.; Liu, B. H. Highresolution and universal visualization of latent fingerprints based on aptamer-functionalized core–shell nanoparticles with embedded SERS reporters. ACS Appl. Mater. Interfaces 2016, 8, 14389–14395.

118

Song, W.; Mao, Z.; Liu, X. J.; Lu, Y.; Li, Z. S.; Zhao, B.; Lu, L. H. Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging. Nanoscale 2012, 4, 2333–2338.

119

Cui, J. B.; Xu, S. Y.; Guo, C.; Jiang, R.; James, T. D.; Wang, L. Y. Highly efficient photothermal semiconductor nanocomposites for photothermal imaging of latent fingerprints. Anal. Chem. 2015, 87, 11592–11598.

120

Hu, L. Z.; Xu, G. B. Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 2010, 39, 3275–3304.

121

Xu, L. R.; Li, Y.; Wu, S. Z.; Liu, X. H.; Su, B. Imaging latent fingerprints by electrochemiluminescence. Angew. Chem., Int. Ed. 2012, 51, 8068–8072.

122

Xu, L. R.; Li, Y.; He, Y. Y.; Su, B. Non-destructive enhancement of latent fingerprints on stainless steel surfaces by electrochemiluminescence. Analyst 2013, 138, 2357–2362.

123

Xu, L. R.; Zhou, Z. Y.; Zhang, C. Z.; He, Y. Y.; Su, B. Electrochemiluminescence imaging of latent fingermarks through the immunodetection of secretions in human perspiration. Chem. Commun. 2014, 50, 9097–9100.

Publication history
Copyright
Acknowledgements

Publication history

Received: 10 March 2018
Revised: 10 April 2018
Accepted: 13 April 2018
Published: 03 May 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21675120), the National Key R & D Program of China (Nos. 2017YFA0208000 and 2016YFF0100800), the National Basic Research Program of China (973 Program, No. 2015CB932600) and Ten Thousand Talents Program for Young Talents.

Return