Journal Home > Volume 11 , Issue 9

Excellent electro-optical (E-O) performances are essential for high-quality reflective cholesteric liquid crystal (LC) displays, but are often limited by the high driving voltages required by these displays. Dispersing functional nanomaterials into the LCs has emerged as a promising approach to achieve outstanding E-O properties. In this work, we report the facet-controlled E-O properties of a chiral nematic LC (N*LC) doped with cubic, octahedral, and rhombic dodecahedral Cu2O. The outstanding E-O properties of the doped systems are related to the interaction between the liquid crystals and Cu2O dopants with different exposed crystal planes. Doping with octahedral and rhombic dodecahedral Cu2O reduces the stability of the planar state, as a result of both the surface abundance of active Cu atoms that interact with the polarized LC molecules, and the large amounts of vertexes and edges on the crystal surfaces, which accelerate the transition from the planar to the focal conic state under an applied electric field. Rhombic Cu2O is the most effective dopant for improving the E-O properties of the present LCs, resulting in a 65.31% reduction of the threshold voltage. The facet and morphology effects highlighted in this work provide a new pathway to develop excellent energy-saving meso-materials with exposed high-reactivity facets, improving their potential applications in electro-optical technologies and information displays.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facet-dependent electro-optical properties of cholesteric liquid crystals doped with Cu2O nanocrystals

Show Author's information Dongyu Zhao1( )Lihong Xu1Yang Shang1,2( )Xiaoxia Li1Lin Guo1( )
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering Beihang UniversityBeijing100191China
Key Laboratory of Micro-Nano Measurement-Manipulation and Physics Ministry of Education School of Physics and Nuclear Energy Engineering Beihang UniversityBeijing100191China

Abstract

Excellent electro-optical (E-O) performances are essential for high-quality reflective cholesteric liquid crystal (LC) displays, but are often limited by the high driving voltages required by these displays. Dispersing functional nanomaterials into the LCs has emerged as a promising approach to achieve outstanding E-O properties. In this work, we report the facet-controlled E-O properties of a chiral nematic LC (N*LC) doped with cubic, octahedral, and rhombic dodecahedral Cu2O. The outstanding E-O properties of the doped systems are related to the interaction between the liquid crystals and Cu2O dopants with different exposed crystal planes. Doping with octahedral and rhombic dodecahedral Cu2O reduces the stability of the planar state, as a result of both the surface abundance of active Cu atoms that interact with the polarized LC molecules, and the large amounts of vertexes and edges on the crystal surfaces, which accelerate the transition from the planar to the focal conic state under an applied electric field. Rhombic Cu2O is the most effective dopant for improving the E-O properties of the present LCs, resulting in a 65.31% reduction of the threshold voltage. The facet and morphology effects highlighted in this work provide a new pathway to develop excellent energy-saving meso-materials with exposed high-reactivity facets, improving their potential applications in electro-optical technologies and information displays.

Keywords: liquid crystals, Cu2O nanocrystals, electro-optical properties, host-guest systems, facet-dependence

References(48)

1

Bisoyi, H. K.; Kumar, S. Liquid-crystal nanoscience: An emerging avenue of soft self-assembly. Chem. Soc. Rev. 2011, 40, 306-319.

2

Stamatoiu, O.; Mirzaei, J.; Feng, X.; Hegmann, T. Nanoparticles in liquid crystals and liquid crystalline nanoparticles. In Liquid Crystals; Tschierske, C., Ed.; Springer: Berlin, Heidelberg, 2012, 331-394.

3

Gutierrez-Cuevas, K. G.; Wang, L.; Zheng, Z. G.; Bisoyi, H. K.; Li, G. Q.; Tan, L. S.; Vaia, R. A.; Li, Q. Frequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 13090-13094.

4

Li, Q. Nanoscience with Liquid Crystals: From Self-Organized Nanostructures to Applications; Springer: Switzerland, 2014.

5

Wang, L.; Li. Q. Photochromism into nanosystems: Towards lighting up the future nanoworld. Chem. Soc. Rev. 2018, 47, 1044-1097.

6

Chung, Y. F.; Chen, M. Z.; Yang, S. H.; Jeng, S. C. Tunable surface wettability of ZnO nanoparticle arrays for controlling the alignment of liquid crystals. ACS Appl. Mater. Interfaces 2015, 7, 9619-9624.

7

Zhao, D. Y.; Zhou, W.; Cui, X. P.; Tian, Y.; Guo, L.; Yang, H. Alignment of liquid crystals doped with nickel nanoparticles containing different morphologies. Adv. Mater. 2011, 23, 5779-5784.

8

Liu, H. S.; Jeng, S. C. Liquid crystal alignment by polyhedral oligomeric silsesquioxane (POSS)-polyimide nanocomposites. Opt. Mater. 2013, 35, 1418-1421.

9

Ahmad, F.; Jamil, M.; Lee, J. W.; Jeon, Y. J. Magnetically driven vertical alignment of liquid crystals by ferromagnetic particles. Liquid Cryst. 2015, 42, 233-239.

10

Prasad, S. K.; Kumar, M. V.; Yelamaggad, C. V. Dual frequency conductivity switching in a carbon nanotube/liquid crystal composite. Carbon 2013, 59, 512-517.

11

Lee, W. -K.; Choi, Y. S.; Kang, Y. -G.; Sung, J.; Seo, D. S.; Park, C. Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks. Adv. Funct. Mater. 2011, 21, 3843-3850.

12

García-García, A.; Vergaz, R.; Algorri, J. F.; Quintana, X.; Otón, J. M. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes. Beilstein J. Nanotechnol. 2015, 6, 396-403.

13

Zhang, Y.; Liu, Q. K.; Mundoor, H.; Yuan, Y.; Smalyukh, I. I. Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers. ACS Nano 2015, 9, 3097-3108.

14

Marino, L.; Marino, S.; Wang, D.; Bruno, E.; Scaramuzza, N. Nonvolatile memory effects in an orthoconic smectic liquid crystal mixture doped with polymer-capped gold nanoparticles. Soft Matter 2014, 10, 3842-3849.

15

Nishida, N.; Shiraishi, Y.; Kobayashi, S.; Toshima, N. Fabrication of liquid crystal sol containing capped Ag-Pd bimetallic nanoparticles and their electro-optic properties. J. Phys. Chem. C 2008, 112, 20284-20290.

16

Chandran, A.; Prakash, J.; Naik, K. K.; Srivastava, A. K.; Dąbrowski, R.; Czerwiński, M.; Biradar, A. M. Preparation and characterization of MgO nanoparticles/ferroelectric liquid crystal composites for faster display devices with improved contrast. J. Mater. Chem. C 2014, 2, 1844-1853.

17

Goel, P.; Arora, M.; Biradar, A. M. Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling. J. Appl. Phys. 2014, 115, 124905.

18

Branch, J.; Thompson, R.; Taylor, J. W.; Salamanca-Riba, L.; Martínez-Miranda, L. J. ZnO nanorod-smectic liquid crystal composites: Role of ZnO particle size, shape, and concentration on liquid crystal order and current-voltage properties. J. Appl. Phys. 2014, 115, 164313.

19

Darla, M. R.; Hegde, S.; Varghese, S. Effect of BaTiO3 nanoparticle on electro-optical properties of polymer dispersed liquid crystal displays. J. Crystalliz. Process Technol. 2014, 4, 60-63.

20

Shukla, R. K.; Liebig, C. M.; Evans, D. R.; Haase, W. Electro-optical behaviour and dielectric dynamics of harvested ferroelectric LiNbO3 nanoparticle-doped ferroelectric liquid crystal nanocolloids. RSC Adv. 2014, 4, 18529-18536.

21

Kaczmarek, M.; Buchnev, O.; Nandhakumar, I. Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response. Appl. Phys. Lett. 2008, 92, 103307.

22

Kurochkin, O.; Buchnev, O.; Iljin, A.; Park, S. K.; Kwon, S. B.; Grabar, O.; Reznikov, Y. A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal. J. Opt. A: Pure Appl. Opt. 2009, 11, 024003.

23

Lee, W. -K.; Hwang, S. J.; Cho, M. -J.; Park, H. -G.; Han, J. -W.; Song, S.; Jang, J. H.; Seo, D. -S. CIS-ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. Nanoscale 2013, 5, 193-199.

24

Cho, M. -J.; Park, H. -G.; Jeong, H. -C.; Lee, J. -W.; Jung, Y. H.; Kim, D. -H.; Kim, J. -H.; Lee, J. -W.; Seo, D. -S. Superior fast switching of liquid crystal devices using graphene quantum dots. Liquid Cryst. 2014, 41, 761-767.

25

Liu, F.; Wang, J. J.; Ge, Z. H.; Li, K. X.; Ding, H. J.; Zhang, B. P.; Wang, D.; Yang, H. Electro-responsive 1-D nanomaterial driven broad-band reflection in chiral nematic liquid crystals. J. Mater. Chem. C 2013, 1, 216-219.

26

Wang, L.; He, W. L.; Xiao, X.; Wang, M, ; Yang, P. Y.; Zhou, Z. J.; Yang, H.; Yu, H. F.; Lu, Y. F. Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles. J. Mater. Chem. 2012, 22, 19629-19633.

27

Zhang, X. W.; Luo, D.; Li, Y.; Zhao, M.; Han, B.; Zhao, M. T.; Dai, H. T. PbS nanoparticles stabilised blue phase liquid crystals. Liquid Cryst. 2015, 42, 1257-1261.

28

Shang, Y.; Guo, L. Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing. Adv. Sci. 2015, 2, 1500140.

29

Shang, Y.; Zhang, D. F.; Guo, L. CuCl-intermediated construction of short-range-ordered Cu2O mesoporous spheres with excellent adsorption performance. J. Mater. Chem. 2012, 22, 856-861.

30

Rao, H. H.; Fu, H.; Jiang, Y. Y.; Zhao, Y. F. Easy copper-catalyzed synthesis of primary aromatic amines by couplings aromatic boronic acids with aqueous ammonia at room temperature. Angew. Chem., Int. Ed. 2009, 48, 1114-1116.

31

You, T. T.; Jiang, L.; Yin, P. G.; Shang, Y.; Zhang, D. F.; Guo, L.; Yang, S, H. Direct observation of p, p'-dimercaptoazobenzene produced from p-aminothiophenol and p-nitrothiophenol on Cu2O nanoparticles by surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2014, 45, 7-14.

32

Jiang, L.; You, T. T.; Yin, P. G.; Shang, Y.; Zhang, D. F.; Guo, L.; Yang, S. H. Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: Charge-transfer and electromagnetic enhancement. Nanoscale 2013, 5, 2784-2789.

33

Hung, L. I.; Tsung, C. K.; Huang, W. Y.; Yang, P. D. Room-temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 2010, 22, 1910-1914.

34

Zhang, D. F.; Zhang, H.; Guo, L. Zheng, K.; Han, X. D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220-5225.

35

Zheng, Z. G.; Li, Y. N.; Bisoyi, H. K.; Wang, L.; Bunning, T. J.; Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 2016, 531, 352-357.

36

Fan, J.; L, Y. N.; Bisoyi, H. K.; Zola, R. S.; Yang, D. K.; Bunning, T. J.; Weitz, D. A.; Li, Q. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets. Angew. Chem., Int. Ed. 2015, 127, 2188-2192.

37

Wang, L.; Dong, H.; Li, Y. N.; Xue, C. M.; Sun, L. D.; Yan, C. H.; Li, Q. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. J. Am. Chem. Soc. 2014, 136, 4480-4483.

38

Wang, H. H.; Wang, L.; Xie, H.; Li, C. Y.; Guo, S. M.; Wang, M.; Zou, C.; Yang, D. K.; Yang, H. Electrically controllable microstructures and dynamic light scattering properties of liquid crystals with negative dielectric anisotropy. RSC Adv. 2015, 5, 33489-33495.

39

Fu, D. W.; Li, J. T.; Wei, J.; Guo, J. B. Effects of terminal chain length in hydrogen-bonded chiral switches on phototunable behavior of chiral nematic liquid crystals: Helicity inversion and phase transition. Soft Matter, 2015, 11, 3034-3045.

40

Jin, O. Y.; Fu, D. W.; Ge, Y. X.; Wei, J.; Guo, J. B. Hydrogen-bonded chiral molecular switches: Photo-and thermally-reversible switchable full range color in the self-organized helical superstructure. New J. Chem. 2015, 39, 254-261.

41

Wang, L.; Dong, H.; Li, Y. N.; Liu, R.; Wang, Y. F.; Bisoyi, H. K.; Sun, L.D.; Yan, C. H.; Li, Q. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer. Adv. Mater. 2015, 27, 2065-2069.

42

Wang, L.; Bisoyi, H. K.; Zheng, Z. G.; Gutierrez-Cuevas, K. G.; Singh, G.; Kumar, S.; Bunning, T. J.; Li. Q. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene. Mater. Today 2017, 20, 230-237.

43

Li, Q.; Li, Y. N.; Ma, J.; Yang, D. K.; White, T. J.; Bunning, T. J. Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure. Adv. Mater. 2011, 23, 5069-5073.

44

Coles, H.; Morris, S. Liquid-crystal lasers. Nat. Photonics 2010, 4, 676-685.

45

Mulder, D. J.; Schenning, A. P. H. J.; Bastiaansen, C. W. M. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. J. Mater. Chem. C 2014, 2, 6695-6705.

46

Liang, X. D.; Gao, L.; Yang, S. W.; Sun, J. Facile synthesis and shape evolution of single-crystal cuprous oxide. Adv. Mater. 2009, 21, 2068-2071.

47

Engström, D.; Trivedi, R. P.; Persson, M.; Goksör, M.; Bertness K. A.; Smalyukh. I. I. Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls. Soft Matter 2011, 7, 6304-6312.

48

Yang, D. K.; Huang, X. Y.; Zhu, Y. M. Bistable cholesteric reflective displays: Materials and drive schemes. Ann. Rev. Mater. Sci. 1997, 27, 117-146.

File
12274_2018_2072_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 January 2018
Revised: 30 March 2018
Accepted: 10 April 2018
Published: 08 May 2018
Issue date: September 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51673008, 51203005, and 21601009).

Return