Journal Home > Volume 11 , Issue 9

Vertically aligned p-silicon nanowire (SiNW) arrays have been extensively investigated in recent years as promising photocathodes for solar-driven hydrogen evolution. However, the fabrication of SiNW photocathodes with both high photoelectrocatalytic activity and long-term operational stability using a simple and affordable approach is a challenging task. Herein, we report conformal and continuous deposition of a di-cobalt phosphide (Co2P) layer on lithography-patterned highly ordered SiNW arrays via a cost-effective drop-casting method followed by a low-temperature phosphorization treatment. The as-deposited Co2P layer consists of crystalline nanoparticles and has an intimate contact with SiNWs, forming a well-defined SiNW@Co2P core/shell nanostructure. The conformal and continuous Co2P layer functions as a highly efficient catalyst capable of substantially improving the photoelectrocatalytic activity for the hydrogen evolution reaction (HER) and effectively passivates the SiNWs to protect them from photo-oxidation, thus prolonging the lifetime of the electrode. As aconsequence, the SiNW@Co2P photocathode with an optimized Co2P layer thickness exhibits a high photocurrent density of–21.9 mA·cm-2 at 0 V versus reversible hydrogen electrode and excellent operational stability up to 20 h for solar-driven hydrogen evolution, outperforming many nanostructured silicon photocathodes reported in the literature. The combination of passivation and catalytic functions in a single continuous layer represents a promising strategy for designing high-performance semiconductor photoelectrodes for use insolar-driven water splitting, which may simplify fabrication procedures andpotentially reduce production costs.

Video
12274_2018_2070_MOESM1_ESM.mov
File
12274_2018_2070_MOESM2_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 January 2018
Revised: 22 March 2018
Accepted: 07 April 2018
Published: 27 April 2018
Issue date: September 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was funded by ERDF funds through the Portuguese Operational Programme for Competitiveness and Internationalization COMPETE 2020, and national funds through FCT–The Portuguese Foundation for Science and Technology, under the project "PTDC/ CTM-ENE/2349/2014" (Grant Agreement No. 016660). The work is also partially funded by the Portugal-China Bilateral Collaborative Programme (FCT/ 21102/28/12/2016/S). L. F. L. acknowledges the financial support of the FCT Investigator Grant (IF/01595/2014) and Exploratory Grant (IF/01595/2014/CP1247/CT0001). L. Q. acknowledges the financial support of the Ministry of Science and Technology of China (No. 2016YFE0132400).

Return