Journal Home > Volume 11 , Issue 6

In recent years, tremendous research interest has been triggered in the fields of flexible, wearable and miniaturized power supply devices and self-powered energy sources, in which energy harvesting/conversion devices are integrated with energy storage devices into an infinitely self-powered energy system. As opposed to conventional fabrication methods, printing techniques hold promising potency for fabrication of power supply devices with practical scalability and versatility, especially for applications in wearable and portable electronics. To further enhance the performance of the as-fabricated devices, the utilization of nanomaterials is one of the promising strategies, owing to their unique properties. In this review, an overview on the progress of printable strategies to revolutionize the fabrication of power supply devices and integrated system with attractive form factors is provided. The advantages and limitations of the commonly adopted printing techniques for power supply device fabrication are first summarized. Thereafter, the research progress on novel developed printable energy harvesting and conversion devices, including solar cells, nanogenerators and biofuel cells, and the research advances on printable energy storage devices, namely, supercapacitors and rechargeable batteries, are presented, respectively. Although exciting advances on printable material modification, innovative fabrication methods and device performance improvement have been witnessed, there are still several challenges to be addressed to realize fully printable fabrication of integrated self-powered energy sources.


menu
Abstract
Full text
Outline
About this article

Recent progress on printable power supply devices and systems with nanomaterials

Show Author's information Yuanjing Lin1Yuan Gao1,Fang Fang2( )Zhiyong Fan1( )
Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyHong KongChina
Department of Materials ScienceFudan UniversityShanghai200433China

Present address: Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

In recent years, tremendous research interest has been triggered in the fields of flexible, wearable and miniaturized power supply devices and self-powered energy sources, in which energy harvesting/conversion devices are integrated with energy storage devices into an infinitely self-powered energy system. As opposed to conventional fabrication methods, printing techniques hold promising potency for fabrication of power supply devices with practical scalability and versatility, especially for applications in wearable and portable electronics. To further enhance the performance of the as-fabricated devices, the utilization of nanomaterials is one of the promising strategies, owing to their unique properties. In this review, an overview on the progress of printable strategies to revolutionize the fabrication of power supply devices and integrated system with attractive form factors is provided. The advantages and limitations of the commonly adopted printing techniques for power supply device fabrication are first summarized. Thereafter, the research progress on novel developed printable energy harvesting and conversion devices, including solar cells, nanogenerators and biofuel cells, and the research advances on printable energy storage devices, namely, supercapacitors and rechargeable batteries, are presented, respectively. Although exciting advances on printable material modification, innovative fabrication methods and device performance improvement have been witnessed, there are still several challenges to be addressed to realize fully printable fabrication of integrated self-powered energy sources.

Keywords: energy storage, energy conversion, printing techniques, integrated self-powered system

References(144)

1

Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509-514.

2

Jia, W. Z.; Wang, X.; Imani, S.; Bandodkar, A. J.; Ramírez, J.; Mercier, P. P.; Wang, J. Wearable textile biofuel cells for powering electronics. J. Mater. Chem. A 2014, 2, 18184-18189.

3

Honda, W.; Harada, S.; Arie, T.; Akita, S.; Takei, K. Wearable, human‐interactive, health‐monitoring, wireless devices fabricated by macroscale printing techniques. Adv. Funct. Mater. 2014, 24, 3299-3304.

4

Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397-404.

5

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242-246.

6

Kim, J.; Kumar, R.; Bandodkar, A. J.; Wang, J. Advanced materials for printed wearable electrochemical devices: A review. Adv. Electron. Mater. 2017, 3, 1600260.

7

Wang, Z. L. Towards self‐powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553-3567.

8

Leung, S. F.; Tsui, K. H.; Lin, Q. F.; Huang, H. T.; Lu, L. F.; Shieh, J. M.; Shen, C. H.; Hsu, C. H.; Zhang, Q. P.; Li, D. D. et al. Large scale, flexible and three-dimensional quasi-ordered aluminum nanospikes for thin film photovoltaics with omnidirectional light trapping and optimized electrical design. Energy Environ. Sci. 2014, 7, 3611-3616.

9

Lin, Q. F.; Lu, L. F.; Tavakoli, M. M.; Zhang, C.; Lui, G. C.; Chen, Z.; Chen, X. Y.; Tang, L.; Zhang, D. Q.; Lin, Y. J. et al. High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility. Nano Energy 2016, 22, 539-547.

10

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328-334.

11

Sakai, H.; Nakagawa, T.; Tokita, Y.; Hatazawa, T.; Ikeda, T.; Tsujimura, S.; Kano, K. A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy Environ. Sci. 2009, 2, 133-138.

12

Jia, W. Z.; Valdés‐Ramírez, G.; Bandodkar, A. J.; Windmiller, J. R.; Wang, J. Epidermal biofuel cells: Energy harvesting from human perspiration. Angew. Chem., Int. Ed. 2013, 52, 7233-7236.

13

Um, H. D.; Choi, K. H.; Hwang, I.; Kim, S. H.; Seo, K.; Lee, S. Y. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ. Sci. 2017, 10, 931-940.

14

Liu, R. Y.; Liu, Y. Q.; Zou, H. Y.; Song, T.; Sun, B. Q. Integrated solar capacitors for energy conversion and storage. Nano Res. 2017, 10, 1545-1559.

15

Kyeremateng, N. A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7-15.

16

Pech, D.; Brunet, M.; Taberna, P. L.; Simon, P.; Fabre, N.; Mesnilgrente, F.; Conédéra, V.; Durou, H. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 2010, 195, 1266-1269.

17

Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q.; Tsui, K. H.; Lin, Y. J.; Liao, L.; Wang, J. N. et al. 3D arrays of 1024‐pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 2016, 28, 9713-9721.

18

Lin, Q. F.; Sarkar, D.; Lin, Y. J.; Yeung, M.; Blankemeier, L.; Hazra, J.; Wang, W.; Niu, S. Y.; Ravichandran, J.; Fan, Z. Y. et al. Scalable indium phosphide thin-film nanophotonics platform for photovoltaic and photoelectrochemical devices. ACS Nano 2017, 11, 5113-5119.

19

Gao, Y.; Jin, H. Y.; Lin, Q. F.; Li, X.; Tavakoli, M. M.; Leung, S. F.; Tang, W. M.; Zhou, L. M.; Chan, H. L. W.; Fan, Z. Y. Highly flexible and transferable supercapacitors with ordered three-dimensional MnO2/Au/MnO2 nanospike arrays. J. Mater. Chem. A 2015, 3, 10199-10204.

20

Fan, Z. Y.; Ruebusch, D. J.; Rathore, A. A.; Kapadia, R.; Ergen, O.; Leu, P. W.; Javey, A. Challenges and prospects of nanopillar-based solar cells. Nano Res. 2009, 2, 829-843.

21

Cao, X.; Chen, H. T.; Gu, X. F.; Liu, B. L.; Wang, W. L.; Cao, Y.; Wu, F. Q.; Zhou, C. W. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano 2014, 8, 12769-12776.

22

Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Inkjet printing—Process and its applications. Adv. Mater. 2010, 22, 673-685.

23

Li, L.; Wu, Z.; Yuan, S.; Zhang, X. B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 2014, 7, 2101-2122.

24

Yu, X.; Marks, T. J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383-396.

25

Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 2014, 7, 867-884.

26

Zhu, C.; Liu, T. Y.; Qian, F.; Chen, W.; Chandrasekaran, S.; Yao, B.; Song, Y.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M. et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017, 15, 107-120.

27

Zhang, F.; Wei, M.; Viswanathan, V. V.; Swart, B.; Shao, Y. Y.; Wu, G.; Zhou, C. 3D printing technologies for electrochemical energy storage. Nano Energy 2017, 40, 418-431.

28

Noh, Y. Y.; Zhao, N.; Caironi, M.; Sirringhaus, H. Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotechnol. 2007, 2, 784-789.

29

Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123-2126.

30

Sekitani, T.; Noguchi, Y.; Zschieschang, U.; Klauk, H.; Someya, T. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc. Natl. Acad. Sci. USA 2008, 105, 4976-4980.

31

Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.; Jung, S.; Bonaccorso, F.; Paul, P. J. et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992-3006.

32

Azzellino, G.; Grimoldi, A.; Binda, M.; Caironi, M.; Natali, D.; Sampietro, M. Fully inkjet‐printed organic photodetectors with high quantum yield. Adv. Mater. 2013, 25, 6829-6833.

33

Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007.

34

Ota, H.; Chao, M. H.; Gao, Y. J.; Wu, E.; Tai, L. C.; Chen, K.; Matsuoka, Y.; Iwai, K.; Fahad, H. M.; Gao, W. et al. 3D printed "Earable" smart devices for real-time detection of core body temperature. ACS Sens. 2017, 2, 990-997.

35

Rim, Y. S.; Bae, S. H.; Chen, H. J.; De Marco, N.; Yang, Y. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 2016, 28, 4415-4440.

36

Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y. Y.; Takei, K.; Javey, A. Printed carbon nanotube electronics and sensor systems. Adv. Mater. 2016, 28, 4397-4414.

37

Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. All‐organic vapor sensor using inkjet‐printed reduced graphene oxide. Angew. Chem. 2010, 122, 2200-2203.

38

Jang, J.; Ha, J.; Cho, J. Fabrication of water‐dispersible polyaniline‐poly (4‐styrenesulfonate) nanoparticles for inkjet‐printed chemical‐sensor applications. Adv. Mater. 2007, 19, 1772-1775.

39

Nomura, K.; Kaji, R.; Iwata, S.; Otao, S.; Imawaka, N.; Yoshino, K.; Mitsui, R.; Sato, J.; Takahashi, S.; Nakajima, S. et al. A flexible proximity sensor formed by duplex screen/screen-offset printing and its application to non-contact detection of human breathing. Sci. Rep. 2016, 6, 19947.

40

Khan, S.; Lorenzelli, L.; Dahiya, R. S. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sens. J. 2015, 15, 3164-3185.

41

Kuroda Electric Home Page. http://www.kuroda-electric.eu/Ultra-Fine-Pattern-Screen-Printing (accessed Feb 2, 2018).

42

Jost, K.; Stenger, D.; Perez, C. R.; McDonough, J. K.; Lian, K.; Gogotsi, Y.; Dion, G. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ. Sci. 2013, 6, 2698-2705.

43

Chen, P.; Chen, H. T.; Qiu, J.; Zhou, C. W. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594-603.

44

de Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 2004, 16, 203-213.

45

Kumar, B.; Tan, H. S.; Ramalingam, N.; Mhaisalkar, S. G. Integration of ink jet and transfer printing for device fabrication using nanostructured materials. Carbon 2009, 47, 321-324.

46

Kawahara, Y.; Hodges, S.; Cook, B. S.; Zhang, C.; Abowd, G. D. Instant inkjet circuits: Lab-based inkjet printing to support rapid prototyping of UbiComp devices. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 2013, pp 363-372.

47

Siegel, A. C.; Phillips, S. T.; Dickey, M. D.; Lu, N. S.; Suo, Z. G.; Whitesides, G. M. Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 2010, 20, 28-35.

48

Yang, C.; Cui, X. Y.; Zhang, Z. X.; Chiang, S. W.; Lin, W.; Duan, H.; Li, J.; Kang, F. Y.; Wong, C. P. Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits. Nat. Commun. 2015, 6, 8150.

49

Hoth, C. N.; Choulis, S. A.; Schilinsky, P.; Brabec, C. J. High photovoltaic performance of inkjet printed polymer: Fullerene blends. Adv. Mater. 2007, 19, 3973-3978.

50

Kim, K.; Zhu, W.; Qu, X.; Aaronson, C.; McCall, W. R.; Chen, S. C.; Sirbuly, D. J. 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano 2014, 8, 9799-9806.

51

Fu, K.; Yao, Y. G.; Dai, J. Q.; Hu, L. B. Progress in 3D printing of carbon materials for energy‐related applications. Adv. Mater. 2017, 29, 1603486.

52

Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. 3D printing of interdigitated Li‐ion microbattery architectures. Adv. Mater. 2013, 25, 4539-4543.

53

Zhang, B.; Seong, B.; Nguyen, V.; Byun, D. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J. Micromech. Microeng. 2016, 26, 025015.

54

Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

55

Zhang, Y. L.; Guo, L.; Wei, S.; He, Y. Y.; Xia, H.; Chen, Q. D.; Sun, H. B.; Xiao, F. S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 2010, 5, 15-20.

56

Strong, V.; Dubin, S.; El-Kady, M. F.; Lech, A.; Wang, Y.; Weiller, B. H.; Kaner, R. B. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 2012, 6, 1395-1403.

57

Huang, H. C.; Chung, C. J.; Hsieh, C. T.; Kuo, P. L.; Teng, H. Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon. Nano Energy 2016, 21, 90-105.

58

El-Kady, M. F.; Ihns, M.; Li, M. P.; Hwang, J. Y.; Mousavi, M. F.; Chaney, L.; Lech, A. T.; Kaner, R. B. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. USA 2015, 112, 4233-4238.

59

Torrisi, F.; Coleman, J. N. Electrifying inks with 2D materials. Nat. Nanotechnol. 2014, 9, 738-739.

60

Cao, L. J.; Yang, S. B.; Gao, W.; Liu, Z.; Gong, Y. J.; Ma, L. L.; Shi, G.; Lei, S. D.; Zhang, Y H.; Zhang, S. T. et al. Direct laser‐patterned micro‐supercapacitors from paintable MoS2 films. Small 2013, 9, 2905-2910.

61

Jung, M.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A. D. et al. All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron Devices 2010, 57, 571-580.

62

Yang, L.; Rida, A.; Vyas, R.; Tentzeris, M. M. RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microw. Theory Tech. 2007, 55, 2894-2901.

63

Izumi, K.; Yoshida, Y.; Tokito, S. Improved fine layer patterning using soft blanket gravure printing technology. Flex. Print. Electron. 2018, 3, 015011.

64

Sheng, X.; Bower, C. A.; Bonafede, S.; Wilson, J. W.; Fisher, B.; Meitl, M.; Yuen, H.; Wang, S. D.; Shen, L.; Banks, A. R. et al. Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. Nat. Mater. 2014, 13, 593-598.

65

Hoey, J. M.; Lutfurakhmanov, A.; Schulz, D. L.; Akhatov, I. S. A review on aerosol-based direct-write and its applications for microelectronics. J. Nanotechnol. 2012, 2012, Article ID 324380.

66

Seifert, T.; Sowade, E.; Roscher, F.; Wiemer, M.; Gessner, T.; Baumann, R. R. Additive manufacturing technologies compared: Morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 2015, 54, 769-779.

67

Bag, S.; Deneault, J. R.; Durstock, M. F. Aerosol‐jet‐assisted thin‐film growth of CH3NH3PbI3 perovskites—A means to achieve high quality, defect‐free films for efficient solar cells. Adv. Energy Mater. 2017, 7, 1701151.

68

Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944-948.

69

Shaheen, S. E.; Radspinner, R.; Peyghambarian, N.; Jabbour, G. E. Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 2001, 79, 2996-2998.

70

Guo, Q. J.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. 2008, 8, 2982-2987.

71

Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A. Synthesis of CuInS2, CuInSe2, and Cu (InxGa1-x) Se2 (CIGS) nanocrystal "inks" for printable photovoltaics. J. Am. Chem. Soc. 2008, 130, 16770-16777.

72

Kovalenko, M. V. Opportunities and challenges for quantum dot photovoltaics. Nat. Nanotechnol. 2015, 10, 994-997.

73

Guo, F.; Li, N.; Radmilović, V. V.; Radmilović, V. R.; Turbiez, M.; Spiecker, E.; Forberich, K.; Brabec, C. J. Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. Energy Environ. Sci. 2015, 8, 1690-1697.

74

Hashmi, S. G.; Ozkan, M.; Halme, J.; Misic, K. D.; Zakeeruddin, S. M.; Paltakari, J.; Grätzel, M.; Lund, P. D. High performance dye-sensitized solar cells with inkjet printed ionic liquid electrolyte. Nano Energy 2015, 17, 206-215.

75

Hashmi, S. G.; Özkan, M.; Halme, J.; Zakeeruddin, S. M.; Paltakari, J.; Grätzel, M.; Lund, P. D. Dye-sensitized solar cells with inkjet-printed dyes. Energy Environ. Sci. 2016, 9, 2453-2462.

76

Hashmi, S. G.; Martineau, D.; Li, X.; Ozkan, M.; Tiihonen, A.; Dar, M. I.; Sarikka, T.; Zakeeruddin, S. M.; Paltakari, J.; Lund, P. D. et al. Air processed inkjet infiltrated carbon based printed perovskite solar cells with high stability and reproducibility. Adv. Mater. Technol. 2017, 2, 1600183.

77

Yang, Z. B.; Chueh, C. C.; Zuo, F.; Kim, J. H.; Liang, P. W.; Jen, A. K. Y. High‐performance fully printable perovskite solar cells via blade‐coating technique under the ambient condition. Adv. Energy Mater. 2015, 5, 1500328.

78

Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295-298.

79

Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396-17399.

80

Ku, Z. L.; Rong, Y. G.; Xu, M.; Liu, T. F.; Han, H. W. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 2013, 3, 3132.

81

Liu, L. F.; Mei, A. Y.; Liu, T. F.; Jiang, P.; Sheng, Y. S.; Zhang, L. J.; Han, H. W. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 2015, 137, 1790-1793.

82

Xu, M.; Rong, Y. G.; Ku, Z. L.; Mei, A. Y.; Liu, T. F.; Zhang, L. J.; Li, X.; Han, H. W. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. J. Mater. Chem. A 2014, 2, 8607-8611.

83

Hu, M.; Liu, L.; Mei, A.; Yang, Y.; Liu, T.; Han, H. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3. J. Mater. Chem. A 2014, 2, 17115-17121.

84

Cao, K.; Zuo, Z. X.; Cui, J.; Shen, Y.; Moehl, T.; Zakeeruddin, S. M.; Grätzel, M.; Wang, M. K. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy 2015, 17, 171-179.

85

Chen, J. Z.; Rong, Y. G.; Mei, A. Y.; Xiong, Y. L.; Liu, T. F.; Sheng, Y. S.; Jiang, P.; Hong, L.; Guan, Y. J.; Zhu, X. T. Hole‐conductor‐free fully printable mesoscopic solar cell with mixed‐anion perovskite CH3NH3PbI(3-x)(BF4)x. Adv. Energy Mater. 2016, 6, 1502009.

86

Hu, Y.; Si, S.; Mei, A. Y.; Rong, Y. G.; Liu, H. W.; Li, X.; Han, H. W. Stable large‐area (10×10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Solar RRL 2017, 1, 1600019.

87

Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364-367.

88

Hoth, C. N.; Schilinsky, P.; Choulis, S. A.; Brabec, C. J. Printing highly efficient organic solar cells. Nano Lett. 2008, 8, 2806-2813.

89

Yu, Y. L.; Nakano, M.; Ikeda, T. Photomechanics: Directed bending of a polymer film by light. Nature 2003, 425, 145.

90

Galassi, C. Processing of porous ceramics: Piezoelectric materials. J. Eur. Ceram. Soc. 2006, 26, 2951-2958.

91

Maas, R.; Koch, M.; Harris, N. R.; White, N. M.; Evans, A. G. R. Thick-film printing of PZT onto silicon. Mater. Lett. 1997, 31, 109-112.

92

Emamian, S.; Narakathu, B. B.; Chlaihawi, A. A.; Bazuin, B. J.; Atashbar, M. Z. Screen printing of flexible piezoelectric based device on polyethylene terephthalate (PET) and paper for touch and force sensing applications. Sens. Actuators A: Phys. 2017, 263, 639-647.

93

Lee, Y.; Kim, W.; Bhatia, D.; Hwang, H. J.; Lee, S.; Choi, D. Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed system. Nano Energy 2017, 38, 326-334.

94

Jeerapan, I.; Sempionatto, J. R.; Pavinatto, A.; You, J. M.; Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 2016, 4, 18342-18353.

95

Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 2013, 7, 7975-7982.

96

Wang, K.; Zou, W. J.; Quan, B. G.; Yu, A. F.; Wu, H. P.; Jiang, P.; Wei, Z. X. An all‐solid‐state flexible micro‐supercapacitor on a chip. Adv. Energy Mater. 2011, 1, 1068-1072.

97

El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

98

Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496-500.

99

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.

100

Jayalakshmi, M.; Balasubramanian, K. Simple capacitors to supercapacitors—An overview. Int. J. Electrochem. Sci. 2008, 3, 1196-1217.

101

Hu, L. B.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L. F.; Cui, Y. Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. USA 2009, 106, 21490-21494.

102

Jost, K.; Perez, C. R.; McDonough, J. K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 2011, 4, 5060-5067.

103

Le, L. T.; Ervin, M. H.; Qiu, H. W.; Fuchs, B. E.; Lee, W. Y. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 2011, 13, 355-358.

104

Bandodkar, A. J.; López, C. S.; Mohan, A. M. V.; Yin, L.; Kumar, R.; Wang, J. All-printed magnetically self-healing electrochemical devices. Sci. Adv. 2016, 2, e1601465.

105

Li, R. Z.; Peng, R.; Kihm, K. D.; Bai, S.; Bridges, D.; Tumuluri, U.; Wu, Z.; Zhang, T.; Compagnini, G.; Feng, Z. et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci. 2016, 9, 1458-1467.

106

Choi, K. H.; Yoo, J.; Lee, C. K.; Lee, S. Y. All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ. Sci. 2016, 9, 2812-2821.

107

Cai, J. G.; Lv, C.; Watanabe, A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J. Mater. Chem. A 2016, 4, 1671-1679.

108

Pang, H.; Zhang, Y. Z.; Lai, W. Y.; Hu, Z.; Huang, W. Lamellar K2Co3(P2O7)2·2H2O nanocrystal whiskers: High-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing. Nano Energy 2015, 15, 303-312.

109

Li, Y.; Fu, Z. Y.; Su, B. L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634-4667.

110

Li, H.; Tao, Y.; Zheng, X. Y.; Luo, J. Y.; Kang, F. Y.; Cheng, H. M.; Yang, Q. H. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 2016, 9, 3135-3142.

111

Vu, A.; Qian, Y. Q.; Stein, A. Porous electrode materials for lithium‐ion batteries—How to prepare them and what makes them special. Adv. Energy Mater. 2012, 2, 1056-1085.

112

Blake, A. J.; Kohlmeyer, R. R.; Hardin, J. O.; Carmona, E. A.; Maruyama, B.; Berrigan, J. D.; Huang, H.; Durstock, M. F. 3D printable ceramic-polymer electrolytes for flexible high‐performance Li‐ion batteries with enhanced thermal stability. Adv. Energy Mater. 2017, 7, 1602920.

113

Ning, H. L.; Pikul, J. H.; Zhang, R. Y.; Li, X. J.; Xu, S.; Wang, J. J.; Rogers, J. A.; King, W. P.; Braun, P. V. Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. USA 2015, 112, 6573-6578.

114

Zhu, C.; Liu, T. Y.; Qian, F.; Han, T. Y. J.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448-3456.

115

El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326-1330.

116

Lin, Y. J.; Gao, Y.; Fan, Z. Y. Printable fabrication of nanocoral-structured electrodes for high-performance flexible and planar supercapacitor with artistic design. Adv. Mater. 2017, 29, 1701736.

117

Zhao, C.; Wang, C. Y.; Gorkin, R.; Beirne, S.; Shu, K. W.; Wallace, G. G. Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochem. Commun. 2014, 41, 20-23.

118

Hu, J. T.; Jiang, Y.; Cui, S. H.; Duan, Y. D.; Liu, T. C.; Guo, H.; Lin, L. P.; Lin, Y.; Zheng, J. X.; Amine, K. et al. 3D-printed cathodes of LiMn1-xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium‐ion battery. Adv. Energy Mater. 2016, 6, 1600856.

119

Gaikwad, A. M.; Steingart, D. A.; Nga Ng, T.; Schwartz, D. E.; Whiting, G. L. A flexible high potential printed battery for powering printed electronics. Appl. Phys. Lett. 2013, 102, 233302.

120

Braam, K.; Subramanian, V. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator. Adv. Mater. 2015, 27, 689-694.

121

Gaikwad, A. M.; Whiting, G. L.; Steingart, D. A.; Arias, A. C. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 2011, 23, 3251-3255.

122

Kumar, R.; Shin, J.; Yin, L.; You, J. M.; Meng, Y. S.; Wang, J. All‐printed, stretchable Zn‐Ag2O rechargeable battery via hyperelastic binder for self‐powering wearable electronics. Adv. Energy Mater. 2017, 7, 1602096.

123

Fu, K.; Wang, Y. B.; Yan, C. Y.; Yao, Y. G.; Chen, Y.; Dai, J. Q.; Lacey, S.; Wang, Y. B.; Wan, J. Y.; Li, T. et al. Graphene oxide‐based electrode inks for 3D‐printed lithium‐ion batteries. Adv. Mater. 2016, 28, 2587-2594.

124

Milroy, C. A.; Jang, S.; Fujimori, T.; Dodabalapur, A.; Manthiram, A. Inkjet‐printed lithium-sulfur microcathodes for all‐printed, integrated nanomanufacturing. Small 2017, 13, 1603786.

125

Kim, S. H.; Choi, K. H.; Cho, S. J.; Choi, S.; Park, S.; Lee, S. Y. Printable solid-state lithium-ion batteries: A new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Lett. 2015, 15, 5168-5177.

126

Kim, S. H.; Choi, K. H.; Cho, S. J.; Yoo, J.; Lee, S. S.; Lee, S. Y. Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Enviro. Sci. 2018, 11, 321-330.

127

Gao, Z.; Bumgardner, C.; Song, N.; Zhang, Y.; Li, J.; Li, X. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat. Commun. 2016, 7, 11586.

128

Mahmoudzadeh, M. A.; Usgaocar, A. R.; Giorgio, J.; Officer, D. L.; Wallace, G. G.; Madden, J. D. A high energy density solar rechargeable redox battery. J. Mater. Chem. A 2016, 4, 3446-3452.

129

Guo, W. X.; Xue, X. Y.; Wang, S. H.; Lin, C. J.; Wang, Z. L. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 2012, 12, 2520-2523.

130

Chen, X. L.; Sun, H.; Yang, Z. B.; Guan, G. Z.; Zhang, Z. T.; Qiu, L. B.; Peng, H. S. A novel "energy fiber" by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. J. Mater. Chem. A 2014, 2, 1897-1902.

131

Xu, X. B.; Li, S. H.; Zhang, H.; Shen, Y.; Zakeeruddin, S. M.; Graetzel, M.; Cheng, Y. B.; Wang, M. K. A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 2015, 9, 1782-1787.

132

Cohn, A. P.; Erwin, W. R.; Share, K.; Oakes, L.; Westover, A. S.; Carter, R. E.; Bardhan, R.; Pint, C. L. All silicon electrode photocapacitor for integrated energy storage and conversion. Nano Lett. 2015, 15, 2727-2731.

133

Bae, J.; Park, Y. J.; Lee, M.; Cha, S. N.; Choi, Y. J.; Lee, C. S.; Kim, J. M.; Wang, Z. L. Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater. 2011, 23, 3446-3449.

134

Schmidt, D.; Hager, M. D.; Schubert, U. S. Photo-rechargeable electric energy storage systems. Adv. Energy Mater. 2016, 6, 1500369.

135

Xu, J. T.; Chen, Y. H.; Dai, L. M. Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat. Commun. 2015, 6, 8103.

136

Zhou, F. C.; Ren, Z. W.; Zhao, Y. D.; Shen, X. P.; Wang, A. W.; Li, Y. Y.; Surya, C.; Chai, Y. Perovskite photovoltachromic supercapacitor with all-transparent electrodes. ACS Nano 2016, 10, 5900-5908.

137

Shi, C. L.; Dong, H.; Zhu, R.; Li, H.; Sun, Y. C.; Xu, D. S.; Zhao, Q.; Yu, D. P. An "all-in-one" mesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system. Nano Energy 2015, 13, 670-678.

138

Yang, Z. B.; Li, L.; Luo, Y. F.; He, R. X.; Qiu, L. B.; Lin, H. J.; Peng, H. S. An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. J. Mater. Chem. A 2013, 1, 954-958.

139

Chen, T.; Qiu, L. B.; Yang, Z. B.; Cai, Z. B.; Ren, J.; Li, H. P.; Lin, H. J.; Sun, X. M.; Peng, H. S. An integrated "energy wire" for both photoelectric conversion and energy storage. Angew. Chem., Int. Ed. 2012, 51, 11977-11980.

140

Zhang, Z. T.; Chen, X. L.; Chen, P. N.; Guan, G. Z.; Qiu, L. B.; Lin, H. J.; Yang, Z. B.; Bai, W. Y.; Luo, Y. F.; Peng, H. S. Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 2014, 26, 466-470.

141

Fu, Y. P.; Wu, H. W.; Ye, S. Y.; Cai, X.; Yu, X.; Hou, S. C.; Kafafy, H.; Zou, D. C. Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 2013, 6, 805-812.

142

Xia, X. H.; Ku, Z. L.; Zhou, D.; Zhong, Y.; Zhang, Y. Q.; Wang, Y. D.; Huang, M. J.; Tu, J. P.; Fan, H. J. Perovskite solar cell powered electrochromic batteries for smart windows. Mater. Horiz. 2016, 3, 588-595.

143

Cai, G. F.; Darmawan, P.; Cui, M. Q.; Chen, J. W.; Wang, X.; Eh, A. L. S.; Magdassi, S.; Lee, P. S. Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. Nanoscale 2016, 8, 348-357.

144

Berggren, M.; Nilsson, D.; Robinson, N. D. Organic materials for printed electronics. Nat. Mater. 2007, 6, 3-5.

Publication history
Copyright
Acknowledgements

Publication history

Received: 02 February 2018
Revised: 14 March 2018
Accepted: 02 April 2018
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors acknowledge financial support from National Natural Science Foundation of China (No. 51672231), Hong Kong Research Grant Council (General Research Fund Project No. 16237816), and Center for 1D/2D Quantum Materials and State Key Laboratory on Advanced Displays and Optoelectronics at HKUST.

Return