Journal Home > Volume 11 , Issue 10

Neurodegenerative diseases are characterized by progressive nervous system dysfunction, which affects over 90, 000 people every year. Although numerous contrast agents and therapeutic drugs are available for the diagnosis and therapy of neurodegenerative diseases, there are several limitations to their application. Particularly, these contrast agents and drugs are restricted from entering into the brain because of the blood-brain barrier, which represents a major bottleneck to efficacious and safe theranostics of neurodegenerative diseases. Nanoparticles can offer impressive improvement in the theranostics of neurodegenerative diseases, as they can effectively deliver contrast agents and drugs to target sites in the central nervous system. In this review, we describe various delivery systems, including lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles, and exosomes useful for the theranostics of neurodegenerative diseases. Finally, we outline current challenges and our perspectives on the development of delivery systems for theranostics of neurodegenerative diseases.


menu
Abstract
Full text
Outline
About this article

Delivery systems for theranostics in neurodegenerative diseases

Show Author's information Yan Li1Ruiyuan Liu1,2Weihong Ji1,2Yanhui Li1Linying Liu1,2Xin Zhang1( )
State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
University of Chinese Academy of SciencesBeijing100049China

Abstract

Neurodegenerative diseases are characterized by progressive nervous system dysfunction, which affects over 90, 000 people every year. Although numerous contrast agents and therapeutic drugs are available for the diagnosis and therapy of neurodegenerative diseases, there are several limitations to their application. Particularly, these contrast agents and drugs are restricted from entering into the brain because of the blood-brain barrier, which represents a major bottleneck to efficacious and safe theranostics of neurodegenerative diseases. Nanoparticles can offer impressive improvement in the theranostics of neurodegenerative diseases, as they can effectively deliver contrast agents and drugs to target sites in the central nervous system. In this review, we describe various delivery systems, including lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles, and exosomes useful for the theranostics of neurodegenerative diseases. Finally, we outline current challenges and our perspectives on the development of delivery systems for theranostics of neurodegenerative diseases.

Keywords: neurodegenerative diseases, theranostics, blood-brain barrier, delivery systems

References(160)

1

Guo, J. L.; Lee, V. M. Y. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat. Med. 2014, 20, 130–138.

2

Brettschneider, J.; Del Tredici, K.; Lee, V. M. Y.; Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: A focus on human studies. Nat. Rev. Neurosci. 2015, 16, 109–120.

3

Pehlivan, S. B. Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. Pharm. Res. 2013, 30, 2499–2511.

4

Ross, C. A.; Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat. Med. 2004, 10 Suppl, S10–S17.

5

Forman, M. S.; Trojanowski, J. Q.; Lee, V. M. -Y. Neurodegenerative diseases: A decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. 2004, 10, 1055–1063.

6

Barnham, K. J.; Masters, C. L.; Bush, A. I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3, 205–214.

7

Zecca, L.; Youdim, M. B. H.; Riederer, P.; Connor, J. R.; Crichton, R. R. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 2004, 5, 863–873.

8

Andersen, J. K. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med. 2004, 10 Suppl, S18–S25.

9

Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 2003, 4, 49–60.

10

Wang, P.; Moore, A. Molecular imaging of stem cell transplantation for neurodegenerative diseases. Curr. Pharm. Design 2012, 18, 4426–4440.

11

Brundin, P.; Melki, R.; Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 2010, 11, 301–307.

12

Goedert, M. Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 2015, 349, 1255555.

13

Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356.

14

Pimplikar, S. W.; Nixon, R. A.; Robakis, N. K.; Shen, J.; Tsai, L. H. Amyloid-independent mechanisms in Alzheimer's disease pathogenesis. J. Neurosci. 2010, 30, 14946–14954.

15

Liao, Y. H.; Chang, Y. J.; Yoshiike, Y.; Chang, Y. C.; Chen, Y. R. Negatively charged gold nanoparticles inhibit Alzheimer's amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 2012, 8, 3661–3639.

16

Chakravarthy, M.; Chen, S. X.; Dodd, P. R.; Veedu, R. N. Nucleic acid-based theranostics for tackling Alzheimer's disease. Theranostics 2017, 7, 3933–3947.

17

Busquets, M. A.; Sabatė, R.; Estelrich, J. Potential applications of magnetic particles to detect and treat Alzheimer's disease. Nanoscale Res. Lett. 2014, 9, 538–548.

18

Frost, B.; Diamond, M. I. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci. 2010, 11, 155–159.

19

Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A. M.; Mallikarjunan, N. N.; Manohar, S.; Liang, H. F.; Kulkarni, A. R. et al. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer's disease. J. Control. Release 2005, 108, 193–214.

20

Migliore, L.; Uboldi, C.; Di Bucchianico, S.; Coppedè, F. Nanomaterials and neurodegeneration. Environ. Mol. Mutagen. 2015, 56, 149–170.

21

Liu, G.; Men, P.; Harris, P. L. R.; Rolston, R. K.; Perry, G.; Smith, M. A. Nanoparticle iron chelators: A new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci. Lett. 2006, 406, 189–193.

22

Du, H.; Guo, L.; Yan, S. Q.; Sosunov, A. A.; McKhann, G. M.; Yan, S. S. Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc. Natl. Acad. Sci. USA 2010, 107, 18670–18675.

23

Komane, P. P.; Choonara, Y. E.; du Toit, L. C.; Kumar, P.; Kondiah, P. P. D.; Modi, G.; Pillay, V. Diagnosis and treatment of neurological and ischemic disorders employing carbon nanotube technology. J. Nanomater. 2016, 2016, 9417874.

24

Masters, C. L.; Bateman, R.; Blennow, K.; Rowe, C. C.; Sperling, R. A.; Cummings, J. L. Alzheimer's disease. Nat. Rev. Dis. Primers 2015, 1, 15056.

25

Guo, Q.; You, H. H.; Yang, X.; Lin, B. C.; Zhu, Z. H.; Lu, Z. S.; Li, X. X.; Zhao, Y.; Mao, L.; Shen, S. P. et al. Functional single-walled carbon nanotubes 'CAR' for targeting dopamine delivery into the brain of parkinsonian mice. Nanoscale 2017, 9, 10832–10845.

26

Dexter, D. T.; Jenner, P. Parkinson disease: From pathology to molecular disease mechanisms. Free Radic. Biol. Med. 2013, 62, 132–144.

27

Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 2015, 22, 377–388.

28

Michel, P. P.; Hirsch, E. C.; Hunot, S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 2016, 90, 675–691.

29

Dauer, W.; Przedborski, S. Parkinson's disease: Mechanisms and models. Neuron 2003, 39, 889–909.

30

Obeso, J. A.; Rodriguez-Oroz, M. C.; Goetz, C. G.; Marin, C.; Kordower, J. H.; Rodriguez, M.; Hirsch, E. C.; Farrer, M.; Schapira, A. H.; Halliday, G. Missing pieces in the Parkinson's disease puzzle. Nat. Med. 2010, 16, 653–661.

31

Tisch, U.; Schlesinger, I.; Ionescu, R.; Nassar, M.; Axelrod, N.; Robertman, D.; Tessler, Y.; Azar, F.; Marmur, A.; Aharon-Peretz, J. et al. Detection of Alzheimer's and Parkinson's disease from exhaled breath using nanomaterialbased sensors. Nanomedicine 2013, 8, 43–56.

32

Chaudhuri, K. R.; Healy, D. G.; Schapira, A. H. V. Non-motor symptoms of Parkinson's disease: Diagnosis and management. Lancet Neurol 2006, 5, 235–245.

33

Savitt, J. M.; Dawson, V. L.; Dawson, T. M. Diagnosis and treatment of Parkinson disease: Molecules to medicine. J. Clin. Invest. 2006, 116, 1744–1754.

34

Liu, D. B.; Chen, W. W.; Tian, Y.; He, S.; Zheng, W. F.; Sun, J. S.; Wang, Z.; Jiang, X. Y. A highly sensitive goldnanoparticle-based assay for acetylcholinesterase in cerebrospinal fluid of transgenic mice with Alzheimer's disease. Adv. Healthc. Mater. 2012, 1, 90–95.

35

Hughes, A. J.; Daniel, S. E.; Kilford, L.; Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: A clinico-pathological study of 100 cases. J. Neurol Neurosurg Psychiatry 1992, 55, 181–184.

36

Hughes, A. J.; Daniel, S. E.; Lees, A. J. Improved accuracy of clinical diagnosis of Lewy body Parkinson's disease. Neurology 2001, 57, 1497–1499.

37

Mueller, S. G.; Weiner, M. W.; Thal, L. J.; Petersen, R. C.; Jack, C. R.; Jagust, W.; Trojanowski, J. Q.; Toga, A. W.; Beckett, L. Ways toward an early diagnosis in Alzheimer's disease: The Alzheimer's disease neuroimaging initiative (ADNI). Alzheimer's Dementia 2005, 1, 55–66.

38

Viola, K. L.; Sbarboro, J.; Sureka, R.; De, M.; Bicca, M. A.; Wang, J.; Vasavada, S.; Satpathy, S.; Wu, S.; Joshi, H. et al. Towards non-invasive diagnostic imaging of early-stage Alzheimer's disease. Nat. Nanotechnol. 2015, 10, 91–98.

39

Dao, P.; Ye, F. F.; Liu, Y.; Du, Z. Y.; Zhang, K.; Dong, C. Z.; Meunier, B.; Chen, H. X. Development of phenothiazinebased theranostic compounds that act both as inhibitors of β-amyloid aggregation and as imaging probes for amyloid plaques in Alzheimer's disease. ACS Chem. Neurosci. 2017, 8, 798–806.

40

Small, G. W.; Kepe, V.; Ercoli, L. M.; Siddarth, P.; Bookheimer, S. Y.; Miller, K. J.; Lavretsky, H.; Burggren, A. C.; Cole, G. M.; Vinters, H. V. et al. PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med. 2006, 355, 2652–2663.

41

Perrin, R. J.; Fagan, A. M.; Holtzman, D. M. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 2009, 461, 916–922.

42

Nasrallah, I. M.; Wolk, D. A. Multimodality imaging of Alzheimer disease and other neurodegenerative dementias. J. Nucl. Med. 2014, 55, 2003–2011.

43

Zhu, L.; Ploessl, K.; Kung, H. F. PET/SPECT imaging agents for neurodegenerative diseases. Chem. Soc. Rev. 2014, 43, 6683–6691.

44

Wang, Y. X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40.

45

Amiri, H.; Saeidi, K.; Borhani, P.; Manafirad, A.; Ghavami, M.; Zerbi, V. Alzheimer's disease: Pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. ACS Chem. Neurosci. 2013, 4, 1417–1429.

46

Wadas, T. J.; Wong, E. H.; Weisman, G. R.; Anderson, C. J. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 2010, 110, 2858–2902.

47

Seifert, K. D.; Wiener, J. I. The impact of DaTscan on the diagnosis and management of movement disorders: A retrospective study. Am. J. Neurodegener. Dis. 2013, 2, 29–34.

48

Cormode, D. P.; Skajaa, T.; Fayad, Z. A.; Mulder, W. J. M. Nanotechnology in medical imaging: Probe design and applications. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 992–1000.

49

Wang, H.; Zheng, L. F.; Peng, C.; Guo, R.; Shen, M. W.; Shi, X. Y.; Zhang, G. X. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials 2011, 32, 2979–2988.

50

Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 2007, 129, 7661–7665.

51

Kim, S. H.; Kim, E. M.; Lee, C. M.; Kim, D. W.; Lim, S. T.; Sohn, M. H.; Jeong, H. J. Synthesis of PEG-iodine-capped gold nanoparticles and their contrast enhancement in in vitro and in vivo for X-ray/CT. J. Nanomater. 2012, 2012, 46.

52

Lusic, H.; Grinstaff, M. W. X-ray-computed tomography contrast agents. Chem. Rev. 2013, 113, 1641–1666.

53

Betzer, O.; Shwartz, A.; Motiei, M.; Kazimirsky, G.; Gispan, I.; Damti, E.; Brodie, C.; Yadid, G.; Popovtzer, R. Nanoparticle-based CT imaging technique for longitudinal and quantitative stem cell tracking within the brain: Application in neuropsychiatric disorders. ACS Nano 2014, 8, 9274–9285.

54

Shokrollahi, H. Contrast agents for MRI. Mater Sci. Eng. C 2013, 33, 4485–4497.

55

Tong, S.; Hou, S. J.; Zheng, Z. L.; Zhou, J.; Bao, G. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett. 2010, 10, 4607–4613.

56

Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 2010, 62, 1052–1063.

57

Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079.

58

Wadghiri, Y. Z.; Sigurdsson, E. M.; Sadowski, M.; Elliott, J. I.; Li, Y. S.; Scholtzova, H.; Tang, C. Y.; Aguinaldo, G.; Pappolla, M.; Duff, K. et al. Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med. 2003, 50, 293–302.

59

Weinstein, J. S.; Varallyay, C. G.; Dosa, E.; Gahramanov, S.; Hamilton, B.; Rooney, W. D.; Muldoon, L. L.; Neuwelt, E. A. Superparamagnetic iron oxide nanoparticles: Diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cereb. Blood Flow Metab. 2010, 30, 15–35.

60

Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 2011, 12, 723–738.

61

Youdim, M. B.; Buccafusco, J. J. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci. 2005, 26, 27–35.

62

Lauzon, M. A.; Daviau, A.; Marcos, B.; Faucheux, N. Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. J. Control. Release 2015, 206, 187–205.

63

Tan, C. C.; Yu, J. T.; Wang, H. F.; Tan, M. S.; Meng, X. F.; Wang, C.; Jiang, T.; Zhu, X. C.; Tan, L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer's disease: A systematic review and meta-analysis. J. Alzheimers Dis. 2014, 41, 615–631.

64

Sah, D. W. Y. Therapeutic potential of RNA interference for neurological disorders. Life Sci. 2006, 79, 1773–1780.

65

Kao, S. C.; Krichevsky, A. M.; Kosik, K. S.; Tsai, L. H. BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem. 2004, 279, 1942–1949.

66

Singer, O.; Marr, R. A.; Rockenstein, E.; Crews, L.; Coufal, N. G.; Gage, F. H.; Verma, I. M.; Masliah, E. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci. 2005, 8, 1343–1349.

67

Sahni, J. K.; Doggui, S.; Ali, J.; Baboota, S.; Dao, L.; Ramassamy, C. Neurotherapeutic applications of nanoparticles in Alzheimer's disease. J. Control. Release 2011, 152, 208–231.

68

Tatarek-Nossol, M.; Yan, L. M.; Schmauder, A.; Tenidis, K.; Westermark, G.; Kapurniotu, A. Inhibition of hIAPP amyloid-fibril formation and apoptotic cell death by a designed hIAPP amyloid-core-containing hexapeptide. Chem. Biol. 2005, 12, 797–809.

69

Ma, Q. L.; Lim, G. P.; Harris-White, M. E.; Yang, F. S.; Ambegaokar, S. S.; Ubeda, O. J.; Glabe, C. G.; Teter, B.; Frautschy, S. A.; Cole, G. M. Antibodies against β-amyloid reduce Aβ oligomers, glycogen synthase kinase-3β activation and τ phosphorylation in vivo and in vitro. J. Neurosci. Res. 2006, 83, 374–384.

70

Liu, G.; Men, P.; Perry, G.; Smith, M. A. Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer's disease. J. Nanoneurosci. 2009, 1, 42–55.

71

Liu, G.; Men, P.; Kudo, W.; Perry, G.; Smith, M. A. Nanoparticle-chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: A novel therapeutic approach for Alzheimer disease. Neurosci. Lett. 2009, 455, 187–190.

72

Mourtas, S.; Canovi, M.; Zona, C.; Aurilia, D.; Niarakis, A.; La Ferla, B.; Salmona, M.; Nicotra, F.; Gobbi, M.; Antimisiaris, S. G. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1–42 peptide. Biomaterials 2011, 32, 1635–1645.

73

Weintraub, D.; Comella, C. L.; Horn, S. Parkinson's disease-part 2: Treatment of motor symptoms. Am. J. Manag. Care 2008, 14, S49–S58.

74

Nuytemans, K.; Theuns, J.; Cruts, M.; Van Broeckhoven, C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update. Hum. Mutat. 2010, 31, 763–780.

75

Lee, V. M. Y.; Trojanowski, J. Q. Mechanisms of Parkinson's disease linked to pathological α-synuclein: New targets for drug discovery. Neuron 2006, 52, 33–38.

76

Helmschrodt, C.; Höbel, S.; Schöniger, S.; Bauer, A.; Bonicelli, J.; Gringmuth, M.; Fietz, S. A.; Aigner, A.; Richter, A.; Richter, F. Polyethylenimine nanoparticle-mediated siRNA delivery to reduce α-synuclein expression in a model of Parkinson's disease. Mol. Ther. Nucleic Acids 2017, 9, 57–68.

77

Dehay, B.; Bourdenx, M.; Gorry, P.; Przedborski, S.; Vila, M.; Hunot, S.; Singleton, A.; Olanow, C. W.; Merchant, K. M.; Bezard, E. et al. Targeting α-synuclein for treatment of Parkinson's disease: Mechanistic and therapeutic considerations. Lancet Neurol. 2015, 14, 855–866.

78

Abraham, S.; Soundararajan, C. C.; Vivekanandhan, S.; Behari, M. Erythrocyte antioxidant enzymes in Parkinson's disease. Indian J. Med. Res. 2005, 121, 111–115.

79

Surendran, S.; Rajasankar, S. Parkinson's disease: Oxidative stress and therapeutic approaches. Neurol. Sci. 2010, 31, 531–540.

80

Li, Y.; Cheng, Q.; Jiang, Q.; Huang, Y. Y.; Liu, H. M.; Zhao, Y. L.; Cao, W. P.; Ma, G. H.; Dai, F. Y.; Liang, X. J. et al. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. J. Control. Release 2014, 176, 104–114.

81

Lu, Z. G.; Li, Y.; Shi, Y. J.; Li, Y. H.; Xiao, Z. B.; Zhang, X. Traceable nanoparticles with spatiotemporally controlled release ability for synergistic glioblastoma multiforme treatment. Adv. Funct. Mater. 2017, 27, 1703967.

82

Kim, J. Y.; Choi, W. I.; Kim, Y. H.; Tae, G. Brain-targeted delivery of protein using chitosan-and RVG peptideconjugated, pluronic-based nano-carrier. Biomaterials 2013, 34, 1170–1178.

83

Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; López-Iglesias, C.; Teixidó, M. et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012, 33, 7194–7205.

84

Barchet, T. M.; Amiji, M. M. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin. Drug Deliv. 2009, 6, 211–225.

85

Kabanov, A. V.; Gendelman, H. E. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog. Polym. Sci. 2007, 32, 1054–1082.

86

Singh, R.; Lillard, J. W., Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009, 86, 215–223.

87

Zhang, X. L.; Tian, Y. L.; Yuan, P.; Li, Y. Y.; Yaseen, M. A.; Grutzendler, J.; Moore, A.; Ran, C. Z. A bifunctional curcumin analogue for two-photon imaging and inhibiting crosslinking of amyloid beta in Alzheimer's disease. Chem. Commun. 2014, 50, 11550–11553.

88

Balducci, C.; Mancini, S.; Minniti, S.; La Vitola, P.; Zotti, M.; Sancini, G.; Mauri, M.; Cagnotto, A.; Colombo, L.; Fiordaliso, F. et al. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer's disease mouse models. J. Neurosci. 2014, 34, 14022–14031.

89

Bana, L.; Minniti, S.; Salvati, E.; Sesana, S.; Zambelli, V.; Cagnotto, A.; Orlando, A.; Cazzaniga, E.; Zwart, R.; Scheper, W. et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: Implications for therapy of Alzheimer disease. Nanomedicine 2014, 10, 1583–1590.

90

Leyva-Gómez, G.; Cortés, H.; Magaña, J. J.; Leyva-García, N.; Quintanar-Guerrero, D.; Florán, B. Nanoparticle technology for treatment of Parkinson's disease: The role of surface phenomena in reaching the brain. Drug Discov. Today 2015, 20, 824–837.

91

Peng, H. S.; Liu, X. Y.; Wang, G. T.; Li, M. H.; Bratlie, K. M.; Cochran, E.; Wang, Q. Polymeric multifunctional nanomaterials for theranostics. J. Mater. Chem. B 2015, 3, 6856–6870.

92

Mourtas, S.; Lazar, A. N.; Markoutsa, E.; Duyckaerts, C.; Antimisiaris, S. G. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur. J. Med. Chem. 2014, 80, 175–183.

93

Spuch, C.; Navarro, C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer's disease and Parkinson's disease). J. Drug Deliv. 2011, 2011, 469679.

94

Wong, H. L.; Wu, X. Y.; Bendayan, R. Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Deliv. Rev. 2012, 64, 686–700.

95

During, M. J.; Freese, A.; Deutch, A. Y. Kibat, P. tG.; Sabel, B. A.; Langer, R.; Roth, R. H. Biochemical and behavioral recovery in a rodent model of Parkinson's disease following stereotactic implantation of dopamine-containing liposomes. iExp. Neurol. 1992, 115, 193–199.

96

Xiang, Y.; Wu, Q.; Liang, L.; Wang, X. Q.; Wang, J. C.; Zhang, X.; Pu, X. P.; Zhang, Q. Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against Parkinson's disease in the MPTP-induced mice model. J. Drug Target. 2012, 20, 67–75.

97

Taylor, M.; Moore, S.; Mourtas, S.; Niarakis, A.; Re, F.; Zona, C.; La Ferla, B.; Nicotra, F.; Masserini, M.; Antimisiaris, S. G. et al. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer's Aβ peptide. Nanomedicine 2011, 7, 541–550.

98

Gobbi, M.; Re, F.; Canovi, M.; Beeg, M.; Gregori, M.; Sesana, S.; Sonnino, S.; Brogioli, D.; Musicanti, C.; Gasco, P. et al. Lipid-based nanoparticles with high binding affinity for amyloid-β1–42 peptide. Biomaterials 2010, 31, 6519–6529.

99

Ezzati Nazhad Dolatabadi, J.; Omidi, Y. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. TrAC Trend. Anal. Chem. 2016, 77, 100–108.

100

Muthu, M. S.; Leong, D. T.; Mei, L.; Feng, S. S. Nanotheranostics-application and further development of nanomedicine strategies for advanced theranostics. Theranostics 2014, 4, 660–677.

101

Tapeinos, C.; Battaglini, M.; Ciofani, G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Release 2017, 264, 306–332.

102

Esposito, E.; Fantin, M.; Marti, M.; Drechsler, M.; Paccamiccio, L.; Mariani, P.; Sivieri, E.; Lain, F.; Menegatti, E.; Morari, M. et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm. Res. 2008, 25, 1521–1530.

103

Meng, F. F.; Asghar, S.; Gao, S. Y.; Su, Z. G.; Song, J.; Huo, M. R.; Meng, W. D.; Ping, Q. N.; Xiao, Y. Y. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer's disease. Colloids Surf. B. Biointerfaces 2015, 134, 88–97.

104

Pattni, B. S.; Chupin, V. V.; Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 2015, 115, 10938–10966.

105

Naseri, N.; Valzadeh, P.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Adv. Pharm. Bull. 2015, 5, 305–313.

106

Brambilla, D.; Le Droumaguet, B.; Nicolas, J.; Hashemi, S. H.; Wu, L. P.; Moghimi, S. M.; Couvreur, P.; Andrieux, K. Nanotechnologies for Alzheimer's disease: Diagnosis, therapy, and safety issues. Nanomedicine 2011, 7, 521–540.

107

Goldsmith, M.; Abramovitz, L.; Peer, D. Precision nanomedicine in neurodegenerative diseases. ACS Nano 2014, 8, 1958–1965.

108

Risbud, M. V.; Bhonde, R. R. Polyacrylamide-chitosan hydrogels: In vitro biocompatibility and sustained antibiotic release studies. Drug Deliv. 2000, 7, 69–75.

109

Cho, Y.; Shi, R. Y.; Borgens, R. B. Chitosan nanoparticlebased neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. J. Biol. Eng. 2010, 4, 2.

110

Pangestuti, R.; Kim, S. K. Neuroprotective properties of chitosan and its derivatives. Mar. Drugs 2010, 8, 2117–2128.

111

Sadigh-Etegbad, S.; Talebi, M.; Farboudi, M.; Mabmoudi, J.; Reybani, B. Effects of levodopa loaded chitosan nanoparticles on cell viability and caspase-3 expression in PC12 neural like cells. Neurosciences 2013, 18, 281–283.

112

Buschmann, M. D.; Merzouki, A.; Lavertu, M.; Thibault, M.; Jean, M.; Darras, V. Chitosans for delivery of nucleic acids. Adv. Drug Deliv. Rev. 2013, 65, 1234–1270.

113

Malhotra, M.; Tomaro-Duchesneau, C.; Prakash, S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials 2013, 34, 1270–1280.

114

Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B. Biointerfaces 2010, 75, 1–18.

115

Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175.

116

Zhang, C.; Wan, X.; Zheng, X. Y.; Shao, X. Y.; Liu, Q. F.; Zhang, Q. Z.; Qian, Y. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice. Biomaterials 2014, 35, 456–465.

117

Zheng, X. Y.; Zhang, C.; Guo, Q.; Wan, X.; Shao, X. Y.; Liu, Q. F.; Zhang, Q. Z. Dual-functional nanoparticles for precise drug delivery to Alzheimer's disease lesions: Targeting mechanisms, pharmacodynamics and safety. Int. J. Pharm. 2017, 525, 237–248.

118

Zhang, C.; Zheng, X. Y.; Wan, X.; Shao, X. Y.; Liu, Q. F.; Zhang, Z. M.; Zhang, Q. Z. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer's disease. J. Control. Release 2014, 192, 317–324.

119

Lu, J. M.; Wang, X. W.; Marin-Muller, C.; Wang, H.; Lin, P. H.; Yao, Q. Z.; Chen, C. Y. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn. 2009, 9, 325–341.

120

Zhang, Z. Y.; Bi, X. L.; Li, H.; Huang, G. H. Enhanced targeting efficiency of PLGA microspheres loaded with Lornoxicam for intra-articular administration. Drug Deliv. 2011, 18, 536–544.

121

Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Kumar, D. S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer's disease. PLoS One 2012, 7, e32616.

122

Pahuja, R.; Seth, K.; Shukla, A.; Shukla, R. K.; Shukla, R. K.; Bhatnagar, P.; Chauhan, L. K. S.; Saxena, P. N.; Arun, J.; Chaudhari, B. P. et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in Parkinsonian rats. ACS Nano 2015, 9, 4850–4871.

123

Herrάn, E.; Pérez-Gonzάlez, R.; Igartua, M.; Pedraz, J. L.; Carro, E.; Hernάndez, R. M. VEGF-releasing biodegradable nanospheres administered by craniotomy: A novel therapeutic approach in the APP/Ps1 mouse model of Alzheimer's disease. J. Control. Release 2013, 170, 111–119.

124

Zhang, R.; Li, Y.; Hu, B. B.; Lu, Z. G.; Zhang, J. C.; Zhang, X. Traceable nanoparticle delivery of small interfering RNA and retinoic acid with temporally release ability to control neural stem cell differentiation for Alzheimer's disease therapy. Adv. Mater. 2016, 28, 6345–6352.

125

Li, Y.; Li, Y. H.; Ji, W. H.; Lu, Z. G.; Liu, L. Y.; Shi, Y. J.; Ma, G. H.; Zhang, X. Positively charged polyprodrug amphiphiles with enhanced drug loading and reactive oxygen species-responsive release ability for traceable synergistic therapy. J. Am. Chem. Soc. 2018, 140, 4164–4171.

126

Vio, V.; Marchant, M. J.; Araya, E.; Kogan, M. J. Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Curr. Pharm. Des. 2017, 23, 1916–1926.

127

Cheng, K. K.; Chan, P. S.; Fan, S. J.; Kwan, S. M.; Yeung, K. L.; Wáng, Y. X. J.; Chow, A. H. L.; Wu, E. X.; Baum, L. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI). Biomaterials 2015, 44, 155–172.

128

Neey, A.; Perry, C.; Varsli, B.; Singh, A. K.; Arbneshi, T.; Senapati, D.; Kalluri, J. R.; Ray, P. C. Ultrasensitive and high selective detection of Alzheimer's disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 2009, 3, 2834–2840.

129

Li, M.; Guan, Y. J.; Zhao, A. D.; Ren, J. S.; Qu, X. G. Using multifunctional peptide conjugated Au nanorods for monitoring β-amyloid aggregation and chemo-photothermal treatment of Alzheimer's disease. Theranostics 2017, 7, 2996–3006.

130

Zhang, M.; Mao, X. B.; Yu, Y.; Wang, C. X.; Yang, Y. L.; Wang, C. Nanomaterials for reducing amyloid cytotoxicity. Adv. Mater. 2013, 25, 3780–3801.

131

Xiao, L. H.; Zhao, D.; Chan, W. H.; Choi, M. M.; Li, H. W. Inhibition of beta 1–40 amyloid fibrillation with N-acetyl-L-cysteine capped quantum dots. Biomaterials 2010, 31, 91–98.

132

Karakoti, A. S.; Singh, S.; Kumar, A.; Malinska, M.; Kuchibhatla, S. V. N. T.; Wozniak, K.; Self, W. T.; Seal, S. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 2009, 131, 14144–14145.

133

Kwon, H. J.; Cha, M. Y.; Kim, D.; Kim, D. K.; Soh, M.; Shin, K.; Hyeon, T.; Mook-Jung, I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer's disease. ACS Nano 2016, 10, 2860–2870.

134

Li, S. L.; Liu, Z. H.; Ji, F. T.; Xiao, Z. J.; Wang, M. J.; Peng, Y. J.; Zhang, Y. L.; Liu, L.; Liang, Z. B.; Li, F. Delivery of quantum dot-siRNA nanoplexes in SK-N-SH cells for BACE1 gene silencing and intracellular imaging. Mol. Ther. Nucleic Acids 2012, 1, e20.

135

Niu, S. Q.; Zhang, L. K.; Zhang, L.; Zhuang, S. Y.; Zhan, X. Y.; Chen, W. Y.; Du, S. W.; Yin, L.; You, R.; Li, C. H. et al. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson's disease model. Theranostics 2017, 7, 344–356.

136

Geng, J.; Li, M.; Wu, L.; Chen, C. E.; Qu, X. G. Mesoporous silica nanoparticle-based H2O2 responsive controlled-release system used for Alzheimer's disease treatment. Adv. Healthc. Mater. 2012, 1, 332–336.

137

Shi, P.; Li, M.; Ren, J. S.; Qu, X. G. Gold nanocage-based dual responsive "caged metal chelator" release system: Noninvasive remote control with near infrared for potential treatment of Alzheimer's disease. Adv. Funct. Mater. 2013, 23, 5412–5419.

138

Skaat, H.; Shafir, G.; Margel, S. Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles. J. Nanopart. Res. 2011, 13, 3521–3534.

139

Hu, B. B.; Dai, F. Y.; Fan, Z. M.; Ma, G. H.; Tang, Q. W.; Zhang, X. Nanotheranostics: Congo red/rutin-MNPs with enhanced magnetic resonance imaging and H2O2-responsive therapy of Alzheimer's disease in APPswe/PS1dE9 transgenic mice. Adv. Mater. 2015, 27, 5499–5505.

140

Hu, Y. L.; Gao, J. Q. Potential neurotoxicity of nanoparticles. Int. J. Pharm. 2010, 394, 115–121.

141

Ng, K. K.; Lovell, J. F.; Zhang, G. Lipoprotein-inspired nanoparticles for cancer theranostics. Acc. Chem. Res. 2011, 44, 1105–1113.

142

Song, Q. X.; Huang, M.; Yao, L.; Wang, X. L.; Gu, X.; Chen, J.; Chen, J.; Huang, J. L.; Hu, Q. Y.; Kang, T. et al. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer's disease by accelerating the clearance of amyloid-beta. ACS Nano 2014, 8, 2345–2359.

143

Huang, M.; Hu, M.; Song, Q. X.; Song, H. H.; Huang, J. L.; Gu, X.; Wang, X. L.; Chen, J.; Kang, T.; Feng, X. Y. et al. GM1-modified lipoprotein-like nanoparticle: Multifunctional nanoplatform for the combination therapy of Alzheimer's disease. ACS Nano 2015, 9, 10801–10816.

144

He, C. J.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: Biology and translational medicine. Theranostics 2018, 8, 237–255.

145

Lakhal, S.; Wood, M. J. A. Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. Bioessays 2011, 33, 737–741.

146

Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002, 2, 569–579.

147

Kalani, A.; Tyagi, A.; Tyagi, N. Exosomes: Mediators of neurodegeneration, neuroprotection and therapeutics. Mol. Neurobiol. 2014, 49, 590–600.

148

Vlassov, A. V.; Magdaleno, S.; Setterquist, R.; Conrad, R. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 2012, 1820, 940–948.

149

Tan, A.; Rajadas, J.; Seifalian, A. M. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv. Drug Deliv. Rev. 2013, 65, 357–367.

150

van den Boor, J. G.; Schlee, M.; Coch, C.; Hartmann, G. SiRNA delivery with exosome nanoparticles. Nat. Biotechnol. 2011, 29, 325–326.

151

El Andaloussi, S.; Lakhal, S.; Mäger, I.; Wood, M. J. A. Exosomes for targeted siRNA delivery across biological barriers. Adv. Drug Deliv. Rev. 2013, 65, 391–397.

152

Théry, C.; Regnault, A.; Garin, J.; Wolfers, J.; Zitvogel, L.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Molecular characterization of dendritic cell-derived exosomes: Selective accumulation of the heat shock protein HSC 73. J. Cell Biol. 1999, 147, 599–610.

153

Alvarez-Erviti, L.; Seow, Y.; Yin, H. F.; Betts, C.; Lakhal, S.; Wood, M. J. A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345.

154

Nakase, I.; Noguchi, K.; Fujii, I.; Futaki, S. Vectorization of biomacromolecules into cells using extracellular vesicles with enhanced internalization induced by macropinocytosis. Sci. Rep. 2016, 6, 34937.

155

Johnsen, K. B.; Gudbergsson, J. M.; Skov, M. N.; Pilgaard, L.; Moos, T.; Duroux, M. A comprehensive overview of exosomes as drug delivery vehicles—Endogenous nanocarriers for targeted cancer therapy. Biochim. Biophys. Acta 2014, 1846, 75–87.

156

Zhuang, X. Y.; Xiang, X. Y.; Grizzle, W.; Sun, D. M.; Zhang, S. Q.; Axtell, R. C.; Ju, S. W.; Mu, J. Y.; Zhang, L. F.; Steinman, L. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated antiinflammatory drugs from the nasal region to the brain. Mol. Ther. 2011, 19, 1769–1779.

157

Sun, D. M.; Zhuang, X. Y.; Xiang, X. Y.; Liu, Y. L.; Zhang, S. Y.; Liu, C. R.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H. G. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther. 2010, 18, 1606–1614.

158

Haney, M. J.; Klyachko, N. L.; Zhao, Y. L.; Gupta, R.; Plotnikova, E. G.; He, Z. J.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A. V. et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J. Control. Release 2015, 207, 18–30.

159

Jarmalavičiūtė, A.; Pivoriūnas, A. Exosomes as a potential novel therapeutic tools against neurodegenerative diseases. Pharmacol. Res. 2016, 113, 816–822.

160

Chen, T. S.; Arslan, F.; Yin, Y. J.; Tan, S. S.; Lai, R. C.; Choo, A. B. H.; Padmanabhan, J.; Lee, C. N.; de Kleijn, D. P. V.; Lim, S. K. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J. Transl. Med. 2011, 9, 47.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 February 2018
Revised: 29 March 2018
Accepted: 30 March 2018
Published: 20 April 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was financially supported by the National High Technology Research and Development Program (No. 2016YFA0200303), the Beijing Natural Science Foundation (No. L172046), the National Natural Science Foundation of China (Nos. 31522023, 51373177, and 51573188), the Beijing Municipal Science & Technology Commission (No. Z161100002616015), and the "Strategic Priority Research Program Research Program" of the Chinese Academy of Sciences (No. XDA09030301-3).

Return