Journal Home > Volume 11 , Issue 9

We report the growth and characterization of atomically thick NbS2, TaS2, and FeS films on a 6H-SiC(0001) substrate terminated with monolayer or bilayer epitaxial graphene. The crystal and electronic structures are studied by scanning tunneling microscopy and reflection high-energy electron diffraction. The NbS2 monolayer is solely in the 2H structure, while the TaS2 monolayer contains both 1T and 2H structures. Charge-density waves are observed in all phases. For the FeS films, the tetragonal structure coexists with the hexagonal one and no superconductivity is observed.


menu
Abstract
Full text
Outline
About this article

Growth of atomically thick transition metal sulfide filmson graphene/6H-SiC(0001) by molecular beam epitaxy

Show Author's information Haicheng Lin1Wantong Huang1Kun Zhao1Chaosheng Lian1Wenhui Duan1,2Xi Chen1,2Shuai-Hua Ji1,2( )
State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
Collaborative Innovation Center of Quantum MatterBeijing100084China

Abstract

We report the growth and characterization of atomically thick NbS2, TaS2, and FeS films on a 6H-SiC(0001) substrate terminated with monolayer or bilayer epitaxial graphene. The crystal and electronic structures are studied by scanning tunneling microscopy and reflection high-energy electron diffraction. The NbS2 monolayer is solely in the 2H structure, while the TaS2 monolayer contains both 1T and 2H structures. Charge-density waves are observed in all phases. For the FeS films, the tetragonal structure coexists with the hexagonal one and no superconductivity is observed.

Keywords: two-dimensional (2D) materials, charge density wave, molecular beam epitaxy, NbS2, TaS2, FeS

References(29)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.

2

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201-204.

3

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.

4

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem 2013, 5, 263-275.

5

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys 2014, 10, 343-350.

6

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nature Rev. Mater 2017, 2, 17033.

7

Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol 2012, 7, 494-498.

8

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol 2012, 7, 490-493.

9

Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489-1492.

10

Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forrö, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys 2016, 12, 139-143.

11

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344-1347.

12

Tang, S. J.; Zhang, C. F.; Wong, D.; Pedramrazi, Z.; Tsai, H. Z.; Jia, C. J.; Moritz, B.; Claassen, M.; Ryu, H.; Kahn, S. et al. Quantum spin Hall state in monolayer 1T'-WTe2. Nat. Phys 2017, 13, 683-687.

13

Fei, Z. Y.; Palomaki, T.; Wu, S. F.; Zhao, W. J.; Cai, X. H.; Sun, B. S.; Nguyen, P.; Finney, J.; Xu, X. D.; Cobden, D. H. Edge conduction in monolayer WTe2. Nat. Phys 2017, 13, 677-682.

14

Shimada, T.; Ohuchi, F. S.; Koma, A. Polytypes and charge density waves of ultrathin TaS2 films grown by van der Waals epitaxy. Surf. Sci 1993, 291, 57-66.

15

Sanders, C. E.; Dendzik, M.; Ngankeu, A. S.; Eich, A.; Bruix, A.; Bianchi, M.; Miwa, J. A.; Hammer, B.; Khajetoorians, A. A.; Hofmann, P. Crystalline and electronic structure of single-layer TaS2. Phys. Rev. B 2016, 94, 081404(R).

16

Zhao, K.; Lin, H. C.; Huang, W. T.; Hu, X. P.; Chen, X.; Xue, Q. K.; Ji, S. H. Molecular beam epitaxy growth of tetragonal FeS films on SrTiO3(001) substrates. Chin. Phys. Lett 2017, 34, 087401.

17

Chang, K.; Liu, J. W.; Lin, H. C.; Wang, N.; Zhao, K.; Zhang, A. M.; Jin, F.; Zhong, Y.; Hu, X. P.; Duan, W. H. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274-278.

18

Ge, W. Y.; Kawahara, K.; Tsuji, M.; Ago, H. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale 2013, 5, 5773-5778.

19

Wang, X. S.; Lin, J. H.; Zhu, Y. M.; Luo, C.; Suenaga, K.; Cai, C. Z.; Xie, L. M. Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. Nanoscale 2017, 9, 16607-16611.

20

Naito, M.; Tanaka, S. Electrical transport properties in 2H-NbS2, -NbSe2, -TaS2 and-TaSe2. J. Phys. Soc. Jpn 1982, 51, 219-227.

21

Guillamón, I.; Suderow, H.; Vieira, S.; Cario, L.; Diener, P.; Rodière, P. Superconducting density of states and vortex cores of 2H-NbS2. Phys. Rev. Lett 2008, 101, 166407.

22

Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys 1969, 18, 193-335.

23

Agarwal, M. K.; Patel, J. V.; Patel, H. B. Growth and characterisation of TaS2 single crystals. Bull. Mater. Sci. 1979, 1, 107-112.

24

Castro Neto, A. H. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett 2001, 86, 4382-4385.

25

Burk, B.; Thomson, R. E.; Zettl, A.; Clarke, J. Charge-density- wave domains in 1T-TaS2 observed by satellite structure in scanning-tunneling-microscopy images. Phys. Rev. Lett 1991, 66, 3040-3043.

26

Lai, X. F.; Zhang, H.; Wang, Y. Q.; Wang, X.; Zhang, X.; Lin, J. H.; Huang, F. Q. Observation of superconductivity in tetragonal FeS. J. Am. Chem. Soc 2015, 137, 10148-10151.

27

Zhang, K. F.; Zhang, X. L.; Yang, F.; Song, Y. R.; Chen, X. F.; Liu, C. H.; Qian, D.; Luo, W. D.; Gao, C. L.; Jia, J. F. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy. Appl. Phys. Lett 2016, 108, 061601.

28

Song, C. L.; Wang, Y. L.; Jiang, Y. P.; Li, Z.; Wang, L. L.; He, K.; Chen, X.; Ma, X. C.; Xue, Q. K. Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene. Phys. Rev. B 2011, 84, 020503(R).

29

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276.

Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2017
Revised: 08 March 2018
Accepted: 17 March 2018
Published: 05 April 2018
Issue date: September 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51561145005, 11574175 and 11622433), and the Ministry of Science and Technology of China (No. 2016YFA0301002). All the crystal structures in this paper are produced by VESTA [29].

Return