Journal Home > Volume 11 , Issue 9

III-V compound semiconductor nanowires are generally characterized by the coexistence of zincblende and wurtzite structures. So far, this polytypism has impeded the determination of the electronic properties of the metastable wurtzite phase of GaAs, which thus remain highly controversial. In an effort to obtain new insights into this topic, we cross-correlate nanoscale spectral imaging by near-field scanning optical microscopy with a transmission electron microscopy analysis of the very same polytypic GaAs nanowire dispersed onto a Si wafer. Thus, spatially resolved photoluminescence spectra could be unambiguously assigned to nanowire segments whose structure is known with lattice-resolved accuracy. An emission energy of 1.528 eV was observed from extended zincblende segments, revealing that the dispersed nanowire was under uniaxial strain presumably due to interaction with its supporting substrate. These crucial information and the emission energy obtained for extended pure wurtzite segments were used to perform envelope function calculations of zincblende quantum disks in a wurtzite matrix as well as the inverse structure. In these calculations, we varied the fundamental bandgap, the electron mass, and the band offset between zincblende and wurtzite GaAs. From this multi-parameter comparison with the experimental data, we deduced that the bandgap between the Γ8 conduction and A valence band ranges from 1.532 to 1.539 eV in strain-free wurtzite GaAs, and estimated values of 1.507 to 1.514 eV for the Γ7–A bandgap.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electronic properties of wurtzite GaAs: A correlated structural, optical, and theoretical analysis of the same polytypic GaAs nanowire

Show Author's information Alexander Senichev1,,§( )Pierre Corfdir2,,§Oliver Brandt2Manfred Ramsteiner2Steffen Breuer2,|,|Jörg Schilling3Lutz Geelhaar2Peter Werner1
Max-Planck-Institut für MikrostrukturphysikHalle06120Germany
Paul-Drude-Institut für FestkörperelektronikBerlin10117Germany
Centre for Innovation Competence SiLi-nanoMartin-Luther-UniversitätHalle06120Germany

Present address: Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA

Present address: Fraunhofer HHI, Berlin 10587, Germany

||Present address: ABB Corporate Research, Baden-Dättwil 5405, Switzerland

Abstract

III-V compound semiconductor nanowires are generally characterized by the coexistence of zincblende and wurtzite structures. So far, this polytypism has impeded the determination of the electronic properties of the metastable wurtzite phase of GaAs, which thus remain highly controversial. In an effort to obtain new insights into this topic, we cross-correlate nanoscale spectral imaging by near-field scanning optical microscopy with a transmission electron microscopy analysis of the very same polytypic GaAs nanowire dispersed onto a Si wafer. Thus, spatially resolved photoluminescence spectra could be unambiguously assigned to nanowire segments whose structure is known with lattice-resolved accuracy. An emission energy of 1.528 eV was observed from extended zincblende segments, revealing that the dispersed nanowire was under uniaxial strain presumably due to interaction with its supporting substrate. These crucial information and the emission energy obtained for extended pure wurtzite segments were used to perform envelope function calculations of zincblende quantum disks in a wurtzite matrix as well as the inverse structure. In these calculations, we varied the fundamental bandgap, the electron mass, and the band offset between zincblende and wurtzite GaAs. From this multi-parameter comparison with the experimental data, we deduced that the bandgap between the Γ8 conduction and A valence band ranges from 1.532 to 1.539 eV in strain-free wurtzite GaAs, and estimated values of 1.507 to 1.514 eV for the Γ7–A bandgap.

Keywords: photoluminescence, strain, nanowires, crystal-phase quantum structures, wurtzite GaAs, near-field scanning optical microscopy

References(57)

1

Caroff, P.; Bolinsson, J.; Johansson, J. Crystal phases in III-V nanowires: From random toward engineered polytypism. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 829-846.

2

Glas, F.; Harmand, J. C.; Patriarche, G. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Phys. Rev. Lett. 2007, 99, 146101.

3

Dubrovskii, V. G.; Sibirev, N. V.; Harmand, J. C.; Glas, F. Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 2008, 78, 235301.

4

Krogstrup, P.; Jørgensen, H. I.; Johnson, E.; Madsen, M. H.; Sørensen, C. B.; Fontcuberta i Morral, A.; Aagesen, M.; Nygård, J.; Glas, F. Advances in the theory of III-V nanowire growth dynamics. J. Phys. D: Appl. Phys. 2013, 46, 313001.

5

Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M. C.; Lehmann, S.; Hofmann, S.; Dick, K. A.; Ross, F. M. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 2016, 531, 317-322.

6

Bechstedt, F.; Belabbes, A. Structure, energetics, and electronic states of III-V compound polytypes. J. Phys. : Condens. Matter 2013, 25, 273201.

7

Bao, J. M.; Bell, D. C.; Capasso, F.; Wagner, J. B.; Mårtensson, T.; Trägårdh, J.; Samuelson, L. Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett. 2008, 8, 836-41.

8

Spirkoska, D.; Arbiol, J.; Gustafsson, A.; Conesa-Boj, S.; Glas, F.; Zardo, I.; Heigoldt, M.; Gass, M. H.; Bleloch, A. L.; Estrade, S. et al. Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B 2009, 80, 245325.

9

Jahn, U.; Lähnemann, J.; Pfüller, C.; Brandt, O.; Breuer, S.; Jenichen, B.; Ramsteiner, M.; Geelhaar, L.; Riechert, H. Luminescence of GaAs nanowires consisting of wurtzite and zinc-blende segments. Phys. Rev. B 2012, 85, 045323.

10

Thelander, C.; Caroff, P.; Plissard, S.; Dey, A. W.; Dick, K. A. Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett. 2011, 11, 2424-2429.

11

Bussone, G.; Schäfer-Eberwein, H.; Dimakis, E.; Biermanns, A.; Carbone, D.; Tahraoui, A.; Geelhaar, L.; Haring Bolívar, P.; Schülli, T. U.; Pietsch, U. Correlation of electrical and structural properties of single as-grown GaAs nanowires on Si(111) substrates. Nano Lett. 2015, 15, 981-989.

12

Tersoff, J. Stable self-catalyzed growth of III-V nanowires. Nano Lett. 2015, 15, 6609-6613.

13

Dubrovskii, V. G. Development of growth theory for vapor- liquid-solid nanowires: Contact angle, truncated facets, and crystal phase. Cryst. Growth Des. 2017, 17, 2544-2548.

14

Heiss, M.; Conesa-Boj, S.; Ren, J.; Tseng, H. H.; Gali, A.; Rudolph, A.; Uccelli, E.; Peiró, F.; Morante, J. R.; Schuh, D. et al. Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures. Phys. Rev. B 2011, 83, 045303.

15

Ketterer, B.; Heiss, M.; Livrozet, M. J.; Rudolph, A.; Reiger, E.; Fontcuberta I Morral, A. Determination of the band gap and the split-off band in wurtzite GaAs using Raman and photoluminescence excitation spectroscopy. Phys. Rev. B 2011, 83, 125307.

16

Ahtapodov, L.; Todorovic, J.; Olk, P.; Mjåland, T.; Slåttnes, P.; Dheeraj, D. L.; van Helvoort, A. T. J.; Fimland, B. O.; Weman, H. A story told by a single nanowire: Optical properties of wurtzite GaAs. Nano Lett. 2012, 12, 6090-6095.

17

Hjort, M.; Lehmann, S.; Knutsson, J.; Timm, R.; Jacobsson, D.; Lundgren, E.; Dick, K. A.; Mikkelsen, A. Direct imaging of atomic scale structure and electronic properties of GaAs wurtzite and zinc blende nanowire surfaces. Nano Lett. 2013, 13, 4492-4498.

18

Kim, D. C.; Dheeraj, D. L.; Fimland, B. O.; Weman, H. Polarization dependent photocurrent spectroscopy of single wurtzite GaAs/AlGaAs core-shell nanowires. Appl. Phys. Lett. 2013, 102, 142107.

19

Martelli, F.; Priante, G.; Rubini, S. Photoluminescence of GaAs nanowires at an energy larger than the zincblende band-gap: Dependence on growth parameters. Semicond. Sci. Technol. 2015, 30, 055020.

20

Mukherjee, A.; Ghosh, S.; Breuer, S.; Jahn, U.; Geelhaar, L.; Grahn, H. T. Spatially resolved study of polarized micro- photoluminescence spectroscopy on single GaAs nanowires with mixed zincblende and wurtzite phases. J. Appl. Phys. 2015, 117, 054308.

21

Vainorius, N.; Lehmann, S.; Jacobsson, D.; Samuelson, L.; Dick, K. A.; Pistol, M. E. Confinement in thickness-controlled GaAs polytype nanodots. Nano Lett. 2015, 15, 2652-2656.

22

Vainorius, N.; Lehmann, S.; Gustafsson, A.; Samuelson, L.; Dick, K. A.; Pistol, M. E. Wurtzite GaAs quantum wires: One-dimensional subband formation. Nano Lett. 2016, 16, 2774-2780.

23

Loitsch, B.; Müller, M.; Winnerl, J.; Veit, P.; Rudolph, D.; Abstreiter, G.; Finley, J. J.; Bertram, F.; Christen, J.; Koblmüller, G. Microscopic nature of crystal phase quantum dots in ultrathin GaAs nanowires by nanoscale luminescence characterization. New J. Phys. 2016, 18, 063009.

24

Timofeeva, M.; Bouravleuv, A.; Cirlin, G.; Shtrom, I.; Soshnikov, I.; Reig Escalé, M.; Sergeyev, A.; Grange, R. Polar second-harmonic imaging to resolve pure and mixed crystal phases along GaAs nanowires. Nano Lett. 2016, 16, 6290-6297.

25

McMahon, M. I.; Nelmes, R. J. Observation of a wurtzite form of gallium arsenide. Phys. Rev. Lett. 2005, 95, 215505.

26

Gustafsson, A.; Bolinsson, J.; Sköld, N.; Samuelson, L. Determination of diffusion lengths in nanowires using cathodoluminescence. Appl. Phys. Lett. 2010, 97, 072114.

27

Signorello, G.; Lörtscher, E.; Khomyakov, P. A.; Karg, S.; Dheeraj, D. L.; Gotsmann, B.; Weman, H.; Riel, H. Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat. Commun. 2014, 5, 3655.

28

Bogardus, E. H.; Bebb, H. B. Bound-exciton, free-exciton, band-acceptor, donor-acceptor, and auger recombination in GaAs. Phys. Rev. 1968, 176, 993-1002.

29

Shah, J.; Leite, R. C. C.; Nahory, R. E. Photoluminescence and photoconductivity in undoped epitaxial GaAs. Phys. Rev. 1969, 184, 811-820.

30

Hiruma, K.; Yazawa, M.; Katsuyama, T.; Ogawa, K.; Haraguchi, K.; Koguchi, M.; Kakibayashi, H. Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 1995, 77, 447.

31

Hestroffer, K.; Mata, R.; Camacho, D.; Leclere, C.; Tourbot, G.; Niquet, Y. M.; Cros, A.; Bougerol, C.; Renevier, H.; Daudin, B. The structural properties of GaN/AlN core-shell nanocolumn heterostructures. Nanotechnology 2010, 21, 415702.

32

Hocevar, M.; Thanh Giang, L. T.; Songmuang, R.; den Hertog, M.; Besombes, L.; Bleuse, J.; Niquet, Y. M.; Pelekanos, N. T. Residual strain and piezoelectric effects in passivated GaAs/ AlGaAs core-shell nanowires. Appl. Phys. Lett. 2013, 102, 191103.

33

Schlager, J. B.; Bertness, K. A.; Blanchard, P. T.; Robins, L. H.; Roshko, A.; Sanford, N. A. Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy. J. Appl. Phys. 2008, 103, 124309.

34

Corfdir, P.; Feix, F.; Zettler, J. K.; Fernández-Garrido, S.; Brandt, O. Importance of the dielectric contrast for the polarization of excitonic transitions in single GaN nanowires. New J. Phys. 2015, 17, 033040.

35

Stan, G.; Krylyuk, S.; Davydov, A. V.; Cook, R. F. Bending manipulation and measurements of fracture strength of silicon and oxidized silicon nanowires by atomic force microscopy. J. Mater. Res. 2012, 27, 562-570.

36

Gershoni, D.; Henry, C. H.; Baraff, G. A. Calculating the optical properties of multidimensional heterostructures: Application to the modeling of quaternary quantum well lasers. IEEE J. Quantum Electron. 1993, 29, 2433-2450.

37

Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Band structure parameters of wurtzite and zinc-blende GaAs under strain in the GW approximation. Phys. Rev. B 2011, 84, 035203.

38

Belabbes, A.; Panse, C.; Furthmüller, J.; Bechstedt, F. Electronic bands of III-V semiconductor polytypes and their alignment. Phys. Rev. B 2012, 86, 075208.

39

Greil, J.; Assali, S.; Isono, Y.; Belabbes, A.; Bechstedt, F.; Valega Mackenzie, F. O.; Silov, A. Y.; Bakkers, E. P. A. M.; Haverkort, J. E. M. Optical properties of strained wurtzite gallium phosphide nanowires. Nano Lett. 2016, 16, 3703-3709.

40

Corfdir, P.; Van Hattem, B.; Uccelli, E.; Conesa-Boj, S.; Lefebvre, P.; Fontcuberta i Morral, A.; Phillips, R. T. Three- dimensional magneto-photoluminescence as a probe of the electronic properties of crystal-phase quantum disks in GaAs nanowires. Nano Lett. 2013, 13, 5303-5310.

41

Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369-372.

42

Rudolph, D.; Schweickert, L.; Morkötter, S.; Hanschke, L.; Hertenberger, S.; Bichler, M.; Koblmüller, G.; Abstreiter, G.; Finley, J. J. Probing the trapping and thermal activation dynamics of excitons at single twin defects in GaAs-AlGaAs core-shell nanowires. New J. Phys. 2013, 15, 113032.

43

Senichev, A. V.; Talalaev, V. G.; Shtrom, I. V.; Blumtritt, H.; Cirlin, G. E.; Schilling, J.; Lienau, C.; Werner, P. Nanospectroscopic imaging of twinning superlattices in an individual GaAs-AlGaAs core-shell nanowire. ACS Photonics 2014, 1, 1099-1106.

44

Bellabchara, A.; Lefebvre, P.; Christol, P.; Mathieu, H. Improved modeling of excitons in type-II semiconductor heterostructures by use of a three-dimensional variational function. Phys. Rev. B 1994, 50, 11840-11844.

45

Corfdir, P.; Lefebvre, P. Importance of excitonic effects and the question of internal electric fields in stacking faults and crystal phase quantum discs: The model-case of GaN. J. Appl. Phys. 2012, 112, 053512.

46

De, A.; Pryor, C. E. Predicted band structures of III-V semicon ductors in the wurtzite phase. Phys. Rev. B 2010, 81, 155210.

47

Karin, T.; Linpeng, X.; Glazov, M. M.; Durnev, M. V.; Ivchenko, E. L.; Harvey, S.; Rai, A. K.; Ludwig, A.; Wieck, A. D.; Fu, K. M. C. Giant permanent dipole moment of two-dimensional excitons bound to a single stacking fault. Phys. Rev. B 2016, 94, 41201.

48

Bauer, B.; Hubmann, J.; Lohr, M.; Reiger, E.; Bougeard, D.; Zweck, J. Direct detection of spontaneous polarization in wurtzite GaAs nanowires. Appl. Phys. Lett. 2014, 104, 211902.

49

Loitsch, B.; Rudolph, D.; Morkötter, S.; Döblinger, M.; Grimaldi, G.; Hanschke, L.; Matich, S.; Parzinger, E.; Wurstbauer, U.; Abstreiter, G. et al. Tunable quantum confinement in ultrathin, optically active semiconductor nanowires via reverse-reaction growth. Adv. Mater. 2015, 27, 2195-2202.

50

Titova, L. V.; Hoang, T. B.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Kim, Y.; Joyce, H. J.; Tan, H. H.; Jagadish, C. Temperature dependence of photoluminescence from single core-shell GaAs-AlGaAs nanowires. Appl. Phys. Lett. 2006, 89, 173126.

51

Tomioka, K.; Kobayashi, Y.; Motohisa, J.; Hara, S.; Fukui, T. Selective-area growth of vertically aligned GaAs and GaAs/ AlGaAs core-shell nanowires on Si(111) substrate. Nanotechnology 2009, 20, 145302.

52

Behme, G.; Richter, A.; Süptitz, M.; Lienau, C. Vacuum near-field scanning optical microscope for variable cryogenic temperatures. Rev. Sci. Instrum. 1997, 68, 3458-3463.

53

Intonti, F.; Emiliani, V.; Lienau, C.; Elsaesser, T.; Savona, V.; Runge, E.; Zimmermann, R.; Nötzel, R.; Ploog, K. H. Quantum mechanical repulsion of exciton levels in a disordered quantum well. Phys. Rev. Lett. 2001, 87, 076801.

54

Emiliani, V.; Guenther, T.; Lienau, C.; Nötzel, R.; Ploog, K. H. Ultrafast near-field spectroscopy of quasi-one-dimensional transport in a single quantum wire. Phys. Rev. B 2000, 61, R10583-R10586.

55

Guenther, T.; Lienau, C.; Elsaesser, T.; Glanemann, M.; Axt, V. M.; Kuhn, T.; Eshlaghi, S.; Wieck, A. D. Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy. Phys. Rev. Lett. 2002, 89, 057401.

56

Intonti, F.; Emiliani, V.; Lienau, C.; Elsaesser, T.; Nötzel, R.; Ploog, K. H. Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire. Phys. Rev. B 2001, 63, 075313.

57

Karrai, K.; Grober, R. D. Piezoelectric tip-sample distance control for near field optical microscopes. Appl. Phys. Lett. 1995, 66, 1842-1844.

File
12274_2018_2053_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 August 2017
Revised: 15 March 2018
Accepted: 17 March 2018
Published: 28 April 2018
Issue date: September 2018

Copyright

© The author(s) 2018

Acknowledgements

Acknowledgements

We thank Uwe Jahn for invaluable discussions, and Oliver Marquardt for a critical reading of the manuscript. A. S. is indebted to Christoph Lienau for fruitful discussions of NSOM experiments, Horst Blumtritt for the FIB preparation of single nanowires for TEM analysis, as well as to Wilfried Erfurth and Kornelia Sklarek for electron-beam lithography. P. C. acknowledges funding from the Fonds National Suisse de la Recherche Scientifique through project No. 161032.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return