Journal Home > Volume 11 , Issue 9

The dynamic behavior of octahedral gold nanoparticles (NPs) and nanoparticle clusters (NPCs) in aqueous solution is studied by in-situ liquid-cell transmission electron microscopy (TEM). The octahedral Au NPs/NPCs show preferential orientations in the liquid cell, due to the interaction with the SiNx window. The Au NPs show long-range reversible hopping and three-dimensional (3D) rotational motions in the liquid environment. At the same time, the Au NPCs and NPs perform slow stick-slip and stick-roll motions, respectively, with a centripetal trend. The centripetal motions were explained by a liquid evaporation-induced radial flow model, in which the NPCs/NPs trajectories are controlled by Stokes forces and surface friction by the silicon nitride window. The calculated radius-dependent force (Fc) on the NPCs/NPs shows a semi-linear correlation with the distance r between the NPCs/NPs and the center of mass, accompanied with stochastic fluctuations, in agreement with the model predictions. This work thus demonstrates the effectiveness of in situ liquid-cell TEM for the in-depth understanding of complicated liquid flow and force interactions in nanomaterials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters

Show Author's information Chang Li1Xin Chen1,2( )Haiyang Liu1Jiali Fang1Xiaoqin Zhou1
School of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
Key Laboratory for Ultrafine Materials of Ministry of Education and Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China

Abstract

The dynamic behavior of octahedral gold nanoparticles (NPs) and nanoparticle clusters (NPCs) in aqueous solution is studied by in-situ liquid-cell transmission electron microscopy (TEM). The octahedral Au NPs/NPCs show preferential orientations in the liquid cell, due to the interaction with the SiNx window. The Au NPs show long-range reversible hopping and three-dimensional (3D) rotational motions in the liquid environment. At the same time, the Au NPCs and NPs perform slow stick-slip and stick-roll motions, respectively, with a centripetal trend. The centripetal motions were explained by a liquid evaporation-induced radial flow model, in which the NPCs/NPs trajectories are controlled by Stokes forces and surface friction by the silicon nitride window. The calculated radius-dependent force (Fc) on the NPCs/NPs shows a semi-linear correlation with the distance r between the NPCs/NPs and the center of mass, accompanied with stochastic fluctuations, in agreement with the model predictions. This work thus demonstrates the effectiveness of in situ liquid-cell TEM for the in-depth understanding of complicated liquid flow and force interactions in nanomaterials.

Keywords: nanoparticles, in situ transmission electron microscopy (TEM), nanoassembling, nanoscale fluids, trapping force

References(60)

1

Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 2003, 426, 271-274.

2

Peplow, M. The tiniest Lego: A tale of nanoscale motors, rotors, switches and pumps. Nature 2015, 525, 18-21.

3

Kundu, P. K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Börner, M.; Udayabhaskararao, T.; Manna, D.; Klajn, R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 2015, 7, 646-652.

4

Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 2012, 24, 4811-4841.

5

Jalali, M.; Siavash Moakhar, R.; Kushwaha, A.; Goh, G. K. L.; Riahi-Noori, N.; Sadrnezhaad, S. K. Enhanced dye loading- light harvesting TiO2 photoanode with screen printed nanorod-nanoparticles assembly for highly efficient solar cell. Electrochim. Acta 2015, 169, 395-401.

6

Jia, G. H.; Sitt, A.; Hitin, G. B.; Hadar, I.; Bekenstein, Y.; Amit, Y.; Popov, I.; Banin, U. Couples of colloidal semiconductor nanorods formed by self-limited assembly. Nat. Mater. 2014, 13, 301-307.

7

Shan, W.; Zhu, X.; Liu, M.; Li, L.; Zhong, J. J.; Sun, W.; Zhang, Z. R.; Huang, Y. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 2015, 9, 2345-2356.

8

Xu, Q. G.; Ensign, L. M.; Boylan, N. J.; Schön, A.; Gong, X. Q.; Yang, J. C.; Lamb, N. W.; Cai, S. T.; Yu, T.; Freire, E. et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 2015, 9, 9217-9227.

9

Park, J.; Zheng, H. M.; Lee, W. C.; Geissler, P. L.; Rabani, E.; Alivisatos, A. P. Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 2012, 6, 2078-2085.

10

Schmudde, M.; Grunewald, C.; Goroncy, C.; Noufele, C. N.; Stein, B.; Risse, T.; Graf, C. Controlling the interaction and non-close-packed arrangement of nanoparticles on large areas. ACS Nano 2016, 10, 3525-3535.

11

Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 2006, 312, 420-424.

12

Lloyd, J. A.; Ng, S. H.; Davis, T. J.; Gómez, D. E.; Bach, U. Size selective adsorption of gold nanoparticles by electrostatic assembly. J. Phys. Chem. C 2017, 121, 2437-2443.

13

Gebbie, M. A.; Smith, A. M.; Dobbs, H. A.; Lee, A. A.; Warr, G. G.; Banquy, X.; Valtiner, M.; Rutland, M. W.; Israelachvili, J. N.; Perkin, S. et al. Long range electrostatic forces in ionic liquids. Chem. Commun. 2017, 53, 1214-1224.

14

Tan, S. F.; Anand, U.; Mirsaidov, U. Interactions and attachment pathways between functionalized gold nanorods. ACS Nano 2017, 11, 1633-1640.

15

Chen, Q.; Cho, H.; Manthiram, K.; Yoshida, M.; Ye, X. C.; Alivisatos, A. P. Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy. ACS Cent. Sci. 2015, 1, 33-39.

16

Liu, K.; Nie, Z. H.; Zhao, N.; Li, W.; Rubinstein, M.; Kumacheva, E. Step-growth polymerization of inorganic nanoparticles. Science 2010, 329, 197-200.

17

Li, B.; Li, W.; Li, H. L.; Wu, L. X. Ionic complexes of metal oxide clusters for versatile self-assemblies. Acc. Chem. Res. 2017, 50, 1391-1399.

18

Nielsen, M. H.; Li, D. S.; Zhang, H. Z.; Aloni, S.; Han, T. Y. J.; Frandsen, C.; Seto, J.; Banfield, J. F.; Cölfen, H.; De Yoreo, J. J. Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Micros. Microanal. 2014, 20, 425-436.

19

Chen, Y. C.; Chen, J. Y.; Wu, W. W. In situ observation of au nanostructure evolution in liquid cell TEM. J. Phys. Chem. C 2017, 121, 26069-26075.

20
Dillon, S. J.; Chen, X. Temperature control in liquid cells for TEM. In Liquid Cell Electron Microscopy; Ross, F. M., Ed.; Cambridge University Press: Cambridge, 2016; pp 127-139.https://doi.org/10.1017/9781316337455.007
DOI
21

Chen, X.; Li, C.; Cao, H. L. Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale 2015, 7, 4811-4819.

22

Chen, X.; Shu, J. P.; Chen, Q. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM. Sci. Rep. 2017, 7, 46680.

23

Chen, X.; Li, C.; Kong, X.; Cao, H. L.; Wang, H. L.; Zhou, X. Q. Direct observation of growth and self-assembly of Pt nanoclusters in water with the aid of a triblock polymer using in situ liquid cell transmission electron microscopy (TEM). Chin. J. Chem. 2017, 35, 1278-1283.

24

Lee, W. C.; Kim, B. H.; Choi, S.; Takeuchi, S.; Park, J. Liquid cell electron microscopy of nanoparticle self-assembly driven by solvent drying. J. Phys. Chem. Lett. 2017, 8, 647-654.

25

Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 2015, 350, aaa9886.

26

De Jonge, N.; Bigelow, W. C.; Veith, G. M. Atmospheric pressure scanning transmission electron microscopy. Nano Lett. 2010, 10, 1028-1031.

27

De Jonge, N.; Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 2011, 6, 695-704.

28

Luo, B. B.; Smith, J. W.; Ou, Z. H.; Chen, Q. Quantifying the self-assembly behavior of anisotropic nanoparticles using liquid-phase transmission electron microscopy. Acc. Chem. Res. 2017, 50, 1125-1133.

29

Luo, C.; Wang, C. L.; Wu, X.; Zhang, J.; Chu, J. H. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small 2017, 13, 1604259.

30

Lin, G. H.; Zhu, X.; Anand, U.; Liu, Q.; Lu, J. Y.; Aabdin, Z.; Su, H. B.; Mirsaidov, U. Nanodroplet-mediated assembly of platinum nanoparticle rings in solution. Nano Lett. 2016, 16, 1092-1096.

31

Zheng, H. M.; Claridge, S. A.; Minor, A. M.; Alivisatos, A. P.; Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 2009, 9, 2460-2465.

32

Liu, Y. Z.; Lin, X. -M.; Sun, Y. G.; Rajh, T. In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc. 2013, 135, 3764-3767.

33

Sutter, E.; Sutter, P.; Tkachenko, A. V.; Krahne, R.; De Graaf, J.; Arciniegas, M.; Manna, L. In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat. Commun. 2016, 7, 11213.

34

Lin, G. H.; Chee, S. W.; Raj, S.; Král, P.; Mirsaidov, U. Linker-mediated self-assembly dynamics of charged nanoparticles. ACS Nano 2016, 10, 7443-7450.

35

Chee, S. W.; Baraissov, Z.; Loh, N. D.; Matsudaira, P. T.; Mirsaidov, U. Desorption-mediated motion of nanoparticles at the liquid-solid interface. J. Phys. Chem. C 2016, 120, 20462-20470.

36

Mirsaidov, U. M.; Zheng, H. M.; Bhattacharya, D.; Casana, Y.; Matsudaira, P. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA 2012, 109, 7187-7190.

37

Chang, C. C.; Wu, H. L.; Kuo, C. H.; Huang, M. H. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem. Mater. 2008, 20, 7570-7574.

38

Cheung, T. L.; Hong, L. Y.; Rao, N. X.; Yang, C. B.; Wang, L. B.; Lai, W. J.; Chong, P. H. J.; Law, W. -C.; Yong, K. T. The non-aqueous synthesis of shape controllable Cu2-xS plasmonic nanostructures in a continuous-flow millifluidic chip for the generation of photo-induced heating. Nanoscale 2016, 8, 6609-6622.

39

Pan, L. J.; Tu, J. -W.; Ma, H. -T.; Yang, Y. -J.; Tian, Z. -Q.; Pang, D. -W.; Zhang, Z. -L. Controllable synthesis of nano crystals in droplet reactors. Lab Chip 2018, 18, 41-56.

40

Chen, X.; Li, C.; Ke, K. The development and applications of in situ liquid chamber TEM technologies. Chinese Sci. Bull. 2017, 62, 2886-2892.

41

van Huis, M. A.; Kunneman, L. T.; Overgaag, K.; Xu, Q.; Pandraud, G.; Zandergen, H. W.; Vanmaekelbergh, D. Low- temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 2008, 8, 3959-3963.

42

Klein, K. L.; Anderson, I. M.; De Jonge, N. Transmission electron microscopy with a liquid flow cell. J. Microsc. 2011, 242, 117-123.

43

Woehl, T. J.; Prozorov, T. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J. Phys. Chem. C 2015, 119, 21261-21269.

44

Powers, A. S.; Liao, H. G.; Raja, S. N.; Bronstein, N. D.; Alivisatos, A. P.; Zheng, H. M. Tracking nanoparticle diffusion and interaction during self-assembly in a liquid cell. Nano Lett. 2017, 17, 15-20.

45

Niu, W. X.; Zheng, S. L.; Wang, D. W.; Liu, X. Q.; Li, H. J.; Han, S.; Chen, J.; Tang, Z. Y.; Xu, G. B. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J. Am. Chem. Soc. 2009, 131, 697-703.

46

Zheng, H. M. Using molecular tweezers to move and image nanoparticles. Nanoscale 2013, 5, 4070-4078.

47

Liu, J.; Wang, Z. W.; Sheng, A. X.; Liu, F.; Qin, F. Y.; Wang, Z. L. In situ observation of hematite nanoparticle aggregates using liquid cell transmission electron microscopy. Environ. Sci. Technol. 2016, 50, 5606-5613.

48

Zhu, G. M.; Jiang, Y. Y.; Huang, W.; Zhang, H.; Lin, F.; Jin, C. H. Atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids. Chem. Commun. 2013, 49, 10944-10946.

49

Grogan, J. M.; Schneider, N. M.; Ross, F. M.; Bau, H. H. Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 2014, 14, 359-364.

50

Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 2016, 67, 719-747.

51

Wang, Y. B.; Chen, X.; Cao, H. L.; Deng, C.; Cao, X. D.; Wang, P. A structural study of Escherichia coli cells using an in situ liquid chamber TEM technology. J. Anal. Methods Chem. 2015, 2015, Article ID 829302.

52

Li, D. S.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014-1018.

53

Pettyjohn, E. S.; Christiansen, E. B. Effect of particle shape on free-settling rates of isometric particles. Chem. Eng. Prog. 1948, 44, 157-172.

54

Brenner, H. The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 1961, 16, 242-251.

55

Francis, A. W. Wall effect in falling ball method for viscosity. Physics 1933, 4, 403-406.

56

Yang, J.; Andrei, C. M.; Botton, G. A.; Soleymani, L. In liquid observation and quantification of nucleation and growth of gold nanostructures using in situ transmission electron microscopy. J. Phys. Chem. C 2017, 121, 7435-7441.

57

Wu, J. B.; Gao, W. P.; Yang, H.; Zuo, J. M. Dissolution kinetics of oxidative etching of cubic and icosahedral platinum nanoparticles revealed by in situ liquid transmission electron microscopy. ACS Nano 2017, 11, 1696-1703.

58

Goómez-Granña, S.; Fernaóndez-Loópez, C.; Polavarapu, L.; Salmon, J. B.; Leng, J.; Pastoriza-Santos, I.; Peórez-Juste, J. Gold nanooctahedra with tunable size and microfluidic- induced 3D assembly for highly uniform SERS-active supercrystals. Chem. Mater. 2015, 27, 8310-8317.

59

Mao, Z. W.; Xu, H. L.; Wang, D. Y. Molecular mimetic self-assembly of colloidal particles. Adv. Funct. Mater. 2010, 20, 1053-1074.

60

Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 2010, 4, 3591-3605.

Video
12274_2018_2052_MOESM3_ESM.avi
File
12274_2018_2052_MOESM1_ESM.wmv (201.3 KB)
12274_2018_2052_MOESM2_ESM.wmv (3.2 MB)
12274_2018_2052_MOESM4_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 January 2018
Revised: 05 March 2018
Accepted: 15 March 2018
Published: 05 April 2018
Issue date: September 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We gratefully acknowledge the support of Shanghai Leading Academic Discipline Project (No. B502), Shanghai Key Laboratory Project (No. 08DZ2230500), and the State Key Laboratory of Functional Materials for Informatics Open Project (No. SKL201306).

Return