Journal Home > Volume 11 , Issue 6

Collaborative enhancements from surface plasmons (SPs) and whispering-gallery modes (WGMs) can induce intense near-field effects with high spatial localization around the surface of a semiconducting material. One can construct a highly efficient hybrid microcavity using semiconducting materials through resonant coupling between SPs and WGMs. Hexagonal ZnO micro-/nanostructures, which have been employed as natural WGM microcavities for ultraviolet (UV) lasing, can be used as ideal platforms to construct such hybrid microcavities. Here, we comprehensively review the recent efforts for improving lasing performance by resonant coupling between SPs and WGMs. Traditional SPs originating from various metals as well as novel SPs originating from atomic layers such as graphene are considered. Moreover, we discuss the mechanism of light-matter interactions beyond the improvements in lasing performance.


menu
Abstract
Full text
Outline
About this article

Plasmon-enhanced ZnO whispering-gallery mode lasing

Show Author's information Chunxiang Xu1( )Feifei Qin1Qiuxiang Zhu1,2Junfeng Lu1,3Yueyue Wang4Jitao Li5Yi Lin6Qiannan Cui1Zengliang Shi1Arumugam Gowri Manohari1
State Key Laboratory of BioelectronicsSoutheast UniversityNanjing210096China
College of Information and Electronic EngineeringHunan City UniversityYiyang413000China
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
School of SciencesZhejiang A & F UniversityHangzhou311300China
School of Physics and Telecommunications EngineeringZhoukou Normal UniversityZhoukou466001China
Department of Mathematics and PhysicsHuaiyin Institute of TechnologyHuaiyin223306China

Abstract

Collaborative enhancements from surface plasmons (SPs) and whispering-gallery modes (WGMs) can induce intense near-field effects with high spatial localization around the surface of a semiconducting material. One can construct a highly efficient hybrid microcavity using semiconducting materials through resonant coupling between SPs and WGMs. Hexagonal ZnO micro-/nanostructures, which have been employed as natural WGM microcavities for ultraviolet (UV) lasing, can be used as ideal platforms to construct such hybrid microcavities. Here, we comprehensively review the recent efforts for improving lasing performance by resonant coupling between SPs and WGMs. Traditional SPs originating from various metals as well as novel SPs originating from atomic layers such as graphene are considered. Moreover, we discuss the mechanism of light-matter interactions beyond the improvements in lasing performance.

Keywords: ZnO microcavity, surface plasmon, whispering-gallery mode

References(119)

1

Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.

2

Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748.

3

Cortie, M. B.; McDonagh, A. M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011, 111, 3713–3735.

4

Zhu, Q. X.; Hu, C. D.; Wang, W. J.; He, M. A.; Zhou, J.; Zhao, L. Z.; Peng, Z. X.; Li, S. T.; Zhu, N.; Zhang, Y. Surface plasmon interference pattern on the surface of a silver-clad planar waveguide as a sub-micron lithography tool. Sci. China-Phys. Mech. Astron. 2011, 54, 240–244.

5

Bozhevolnyi, S. I.; Volkov, V. S.; Devaux, E.; Laluet, J. Y.; Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006, 440, 508–511.

6

Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314.

7

Liu, L.; Han, Z. H.; He, S. L. Novel surface plasmon waveguide for high integration. Opt. Express 2005, 13, 6645–6650.

8

Li, Y. J.; Hong, Y.; Peng, Q.; Yao, J. N.; Zhao, Y. S. Orientation-dependent exciton-plasmon coupling in embedded organic/metal nanowire heterostructures. ACS Nano 2017, 11, 10106–10112.

9

Li, Y. J.; Yan, Y. L.; Zhang, C.; Zhao, Y. S.; Yao, J. N. Embedded branch-like organic/metal nanowire heterostructures: Liquid-phase synthesis, efficient photon-plasmon coupling, and optical signal manipulation. Adv. Mater. 2013, 25, 2784–2788.

10

Liedberg, B.; Nylander, C.; Lundström, I. Biosensing with surface plasmon resonance—How it all started. Biosens. Bioelectron. 1995, 10, i–ix.

11

Feng, J.; Siu, V. S.; Roelke, A.; Mehta, V.; Rhieu, S. Y.; Palmore, G. T. R.; Pacifici, D. Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing. Nano. Lett. 2012, 12, 602–609.

12

Shahzad, M.; Medhi, G.; Peale, R. E.; Buchwald, W. R.; Cleary, J. W.; Soref, R.; Boreman, G. D.; Edwards, O. Infrared surface plasmons on heavily doped silicon. J. Appl. Phys. 2011, 110, 123105.

13

Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

14

Panoiu, N. C.; Osgood, R. M. Subwavelength nonlinear plasmonic nanowire. Nano Lett. 2004, 4, 2427–2430.

15

Hu, M. S.; Chen, H. L.; Shen, C. H.; Hong, L. S.; Huang, B. R.; Chen, K. H.; Chen, L. C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nat. Mater. 2006, 5, 102–106.

16

Zhou, F.; Liu, Y.; Li, Z. Y.; Xia, Y. N. Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials. Opt. Express 2010, 18, 13337–13344.

17

Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H. E.; Linfield, E. H.; Davies, A. G.; Ritchie, D. A.; Iotti, R. C.; Rossi, F. Terahertz semiconductor-heterostructure laser. Nature 2002, 417, 156–159.

18

Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on ingan quantum wells. Nat. Mater. 2004, 3, 601–605.

19

Kwon, M. K.; Kim, J. Y.; Kim, B. H.; Park, I. K.; Cho, C. Y.; Byeon, C. C.; Park, S. J. Surface-plasmon-enhanced light-emitting diodes. Adv. Mater. 2008, 20, 1253–1257.

20

Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 2014, 5, 4953.

21

Qiu, Z. R.; Wong, K. S.; Wu, M. M.; Lin, W. J.; Xu, H. F. Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation. Appl. Phy. Lett. 2004, 84, 2739–2741.

22

Zhu, H.; Shan, C. X.; Yao, B.; Li, B. H.; Zhang, J. Y.; Zhang, Z. Z.; Zhao, D. X.; Shen, D. Z.; Fan, X. W.; Lu, Y. M. et al. Ultralow-threshold laser realized in zinc oxide. Adv. Mater. 2009, 21, 1613–1617.

23

Chu, S.; Wang, G. P.; Zhou, W. H.; Lin, Y. Q.; Chernyak, L.; Zhao, J. Z.; Kong, J. Y.; Li, L.; Ren, J. J.; Liu, J. L. Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 2011, 6, 506–510.

24

Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H. Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278–2281.

25

Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W. Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Adv. Mater. 2003, 15, 1911–1914.

26

Wiersig, J. Hexagonal dielectric resonators and microcrystal lasers. Phys. Rev. A 2003, 67, 23807–23823.

27

Zhu, G. Y.; Li, J. T.; Tian, Z. S.; Dai, J.; Wang, Y. Y.; Li, P. L.; Xu, C. X. Electro-pumped whispering gallery mode ZnO microlaser array. Appl. Phys. Lett. 2015, 106, 21111–21115.

28

Bashar, S. B.; Wu, C. X.; Suja, M.; Tian, H.; Shi, W. H.; Liu, J. L. Electrically pumped whispering gallery mode lasing from Au/ZnO microwire schottky junction. Adv. Opt. Mater. 2016, 4, 2063–2067.

29

Chu, S.; Olmedo, M.; Yang, Z.; Kong, J. Y.; Liu, J. L. Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 2008, 93, 181106.

30

Dai, J.; Xu, C. X.; Sun, X. W. ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes. Adv. Mater. 2011, 23, 4115–4120.

31

Lin, J. M.; Lin, H. Y.; Cheng, C. L.; Chen, Y. F. Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 2006, 17, 4391–4394.

32

Lin, Y.; Liu, X. Q.; Wang, T.; Chen, C.; Wu, H.; Liao, L.; Liu, C. Shape-dependent localized surface plasmon enhanced UV-emission from ZnO grown by atomic layer deposition. Nanotechnology 2013, 24, 125705.

33

Sidiropoulos, T. P. H.; Röder, R.; Geburt, S.; Hess, O.; Maier, S. A.; Ronning, C.; Oulton, R. F. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys. 2014, 10, 870–876.

34

Chou, Y. H.; Wu, Y. M.; Hong, K. B.; Chou, B. T.; Shih, J. H.; Chung, Y. C.; Chen, P. Y.; Lin, T. R.; Lin, C. C.; Lin, S. D. et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Lett. 2016, 16, 3179–3186.

35

Ren, M. L.; Liu, W. J.; Aspetti, C. O.; Sun, L. X.; Agarwal, R. Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes. Nat. Commun. 2014, 5, 5432.

36

Lin, H. Y.; Cheng, C. L.; Chou, Y. Y.; Huang, L. L.; Chen, Y. F.; Tsen, K. T. Enhancement of band gap emission stimulated by defect loss. Opt. Express 2006, 14, 2372–2379.

37

Abiyasa, A. P.; Yu, S. F.; Lau, S. P.; Leong, E. S. P.; Yang, H. Y. Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance. Appl. Phys. Lett. 2007, 90, 231106.

38

Zhang, S. G.; Wen, L.; Li, J. L.; Gao, F. L.; Zhang, X. W.; Li, L. H.; Li, G. Q. Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres. J. Phy. D: Appl. Phys 2014, 47, 495103–495109.

39

Jiang, M. M.; Li, J. T.; Xu, C. X.; Wang, S. P.; Shan, C. X.; Xuan, B.; Ning, Y. Q.; Shen, D. Z. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities. Opt. Express 2014, 22, 23836–23850.

40

Liu, Y.; Willis, R. F.; Emtsev, K.; Seyller, T. Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys. Rev. B 2008, 78, 201403–201407.

41

Liu, R.; Fu, X. W.; Meng, J.; Bie, Y. Q.; Yu, D. P.; Liao, Z. M. Graphene plasmon enhanced photoluminescence in ZnO microwires. Nanoscale 2013, 5, 5294–5298.

42

Li, J. T.; Lin, Y.; Lu, J. F.; Xu, C. X.; Wang, Y. Y.; Shi, Z. L.; Dai, J. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance. ACS Nano 2015, 9, 6794–6800.

43

Tai, Y.; Guo, Z. C.; Sharma, J. Improved charge separation properties of organic hetero-junction solar cells by self-assembled monolayers anchored Ag nanoparticles. J. Nanosci. Nanotechnol. 2011, 11, 10813–10816.

44

Theiss, J. R. Design and characterization of metal and semiconducting nanostructures and nanodevices. Ph. D. Dissertation, University of Southern California, CA, 2013.

45

Ujihara, M.; Dang, N. M.; Imae, T. Surface-enhanced resonance Raman scattering of rhodamine 6G in dispersions and on films of confeito-like Au nanoparticles. Sensors 2017, 17, 2563–2580.

46

Jia, Y. R.; Zhang, L.; Song, L. P.; Dai, L. W.; Lu, X. F.; Huang, Y. J.; Zhang, J. W.; Guo, Z. Y.; Chen, T. Giant vesicles with anchored tiny gold nanowires: Fabrication and surface-enhanced Raman scattering. Langmuir 2017, 33, 13376–13383.

47

Kochuveedu, S. T.; Kim, D. P.; Kim, D. H. Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration. J. Phys. Chem. C 2012, 116, 2500–2506.

48

Jiang, J.; Zhang, L. Z.; Li, H.; He, W. W.; Yin, J. J. Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl. Nanoscale 2013, 5, 10573– 10581.

49

Gao, H. W.; Liu, C.; Jeong, H. E.; Yang, P. D. Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 2012, 6, 234–240.

50

Yang, N. L.; Liu, Y. Y.; Wen, H.; Tang, Z. Y.; Zhao, H. J.; Li, Y. L.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment. ACS Nano 2013, 7, 1504–1512.

51

Haes, A. J.; Van Duyne, R. P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596–10604.

52

Homola, J.; Yee, S. S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sensor. Actuat. B: Chem. 1999, 54, 3–15.

53

Knight, M. W.; King, N. S.; Liu, L.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum for plasmonics. ACS nano 2013, 8, 834–840.

54

Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006, 6, 833–838.

55

Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294.

56

West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808.

57

Ekinci, Y.; Solak, H. H.; Löffler, J. F. Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys. 2008, 104, 083107.

58

McMahon, J. M.; Schatz, G. C.; Gray, S. K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013, 15, 5415–5423.

59

Despoja, V.; Novko, D.; Dekanić, K.; Šunjić, M.; Marušić, L. Two-dimensional and π plasmon spectra in pristine and doped graphene. Phys. Rev. B 2013, 87, 075447.

60

Eberlein, T.; Bangert, U.; Nair, R. R.; Jones, R.; Gass, M.; Bleloch, A. L.; Novoselov, K. S.; Geim, A.; Briddon, P. R. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 2008, 77, 233406.

61

Ringler, M.; Schwemer, A.; Wunderlich, M.; Nichtl, A.; Kürzinger, K.; Klar, T. A.; Feldmann, J. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 2008, 100, 203002.

62

Zhu, J.; Ren, Y. J. Tuning the plasmon shift and local electric field distribution of gold nanodumbbell: The effect of surface curvature transition from positive to negative. Appl. Surf. Sci. 2013, 285, 649–656.

63

Yang, Z. L.; Aizpurua, J.; Xu, H. X. Electromagnetic field enhancement in ters configurations. J. Raman Spectrosc. 2009, 40, 1343–1348.

64

Knight, M. W.; Wang, Y. M.; Urban, A. S.; Sobhani, A.; Zheng, B. Y.; Nordlander, P.; Halas, N. J. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013, 13, 1687–1692.

65

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

66

White, T. P.; Catchpole, K. R. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett. 2012, 101, 073905.

67

Moskovits, M. Hot electrons cross boundaries. Science 2011, 332, 676–677.

68

Chen, R.; Ling, B.; Sun, X. W.; Sun, H. D. Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks. Adv. Mater. 2011, 23, 2199–2204.

69

Czekalla, C.; Sturm, C.; Schmidt-Grund, R.; Cao, B. Q.; Lorenz, M.; Grundmann, M. Whispering gallery mode lasing in zinc oxide microwires. Appl. Phys. Lett. 2008, 92, 241102.

70

Kim, C.; Kim, Y. J.; Jang, E. S.; Yi, G. C.; Kim, H. H. Whispering-gallery-modelike-enhanced emission from ZnO nanodisk. Appl. Phys. Lett. 2006, 88, 093104.

71

Ngo, T. H. B.; Chien, C. H.; Wu, S. H.; Chang, Y. C. Size and morphology dependent evolution of resonant modes in ZnO microspheres grown by hydrothermal synthesis. Optics express 2016, 24, 16010–16015.

72

Yu, D. S.; Chen, Y. J.; Li, B. J.; Chen, X. D.; Zhang, M. Q.; Zhao, F. L.; Ren, S. Structural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates. Appl. Phys. Lett. 2007, 91, 091116.

73

Liu, J. Z.; Lee, S.; Ahn, Y. H.; Park, J. Y.; Koh, K. H.; Park, K. H. Identification of dispersion-dependent hexagonal cavity modes of an individual ZnO nanonail. Appl. Phys. Lett. 2008, 92, 263102.

74

Wang, D.; Seo, H. W.; Tin, C. C.; Bozack, M. J.; Williams, J. R.; Park, M.; Tzeng, Y. Lasing in whispering gallery mode in ZnO nanonails. J. Appl. Phys. 2006, 99, 093112.

75

Zhu, G. P.; Xu, C. X.; Zhu, J.; Lv, C. G.; Cui, Y. P. Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle. Appl. Phys. Lett. 2009, 94, 051106.

76

Xing, G. Z.; Wang, D. D.; Yao, B.; Nien, A. Q. L. F.; Yan, Y. S. Structural characteristics, low threshold ultraviolet lasing and ultrafast carrier dynamics in high crystalline ZnO nanowire arrays. Chem. Phys. Lett. 2011, 515, 132–136.

77

Dai, J.; Xu, C. X.; Zheng, K.; Lv, C. G.; Cui, Y. P. Whispering gallery-mode lasing in ZnO microrods at room temperature. Appl. Phys. Lett. 2009, 95, 241110.

78

Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Gnade, B. E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996, 79, 7983.

79

Meng, X. Q.; Zhao, D. X.; Zhang, J. Y.; Shen, D. Z.; Lu, Y. M.; Dong, L.; Xiao, Z. Y.; Liu, Y. C.; Fan, X. W. Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing. Chem. Phys. Lett. 2005, 413, 450–453.

80

Som, T.; Karmakar, B. Surface plasmon resonance in nano-gold antimony glass-ceramic dichroic nanocomposites: One-step synthesis and enhanced fluorescence application. Appl. Surf. Sci. 2009, 255, 9447–9452.

81

Pachoumi, O.; Bakulin, A. A.; Sadhanala, A.; Sirringhaus, H.; Friend, R. H.; Vaynzof, Y. Improved performance of ZnO/polymer hybrid photovoltaic devices by combining metal oxide doping and interfacial modification. J. Phys. Chem. C 2014, 118, 18945–18950.

82

Qiao, Q.; Shan, C. X.; Zheng, J.; Zhu, H.; Yu, S. F.; Li, B. H.; Jia, Y.; Shen, D. Z. Surface plasmon enhanced electrically pumped random lasers. Nanoscale 2013, 5, 513–517.

83

Brewster, M. M.; Zhou, X.; Lim, S. K.; Gradecak, S. Role of Au in the growth and nanoscale optical properties of ZnO nanowires. J. Phys. Chem. Lett. 2011, 2, 586–591.

84

You, J. B.; Zhang, X. W.; Fan, Y. M.; Qu, S.; Chen, N. F. Surface plasmon enhanced ultraviolet emission from ZnO films deposited on Ag/Si(001) by magnetron sputtering. Appl. Phys. Lett. 2007, 91, 231907.

85

Lee, M. K.; Kim, T. G.; Kim, W.; Sung, Y. M. Surface plasmon resonance (SPR) electron and energy transfer in noble metal-zinc oxide composite nanocrystals. J. Phys. Chem. C 2008, 112, 10079–10082.

86

Im, J.; Singh, J.; Soares, J. W.; Steeves, D. M.; Whitten, J. E. Synthesis and optical properties of dithiol-linked ZnO/gold nanoparticle composites. J. Phys. Chem. C 2011, 115, 10518–10523.

87

Li, J.; Ong, H. C. Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films. Appl. Phys. Lett. 2008, 92, 121107–121111.

88

Dixit, T.; Palani, I.; Singh, V. Role of surface plasmon decay mediated hot carriers toward the photoluminescence tuning of metal-coated ZnO nanorods. J. Phys. Chem. C 2017, 121, 3540–3548.

89

Ji, X. H.; Zhang, Q. Y.; Lau, S. P.; Jiang, H. X.; Lin, J. Y. Temperature-dependent photoluminescence and electron field emission properties of AlN nanotip arrays. Appl. Phys. Lett. 2009, 94, 173106.

90

Lu, J. F.; Xu, C. X.; Dai, J.; Li, J. T.; Wang, Y. Y.; Lin, Y.; Li, P. L. Plasmon-enhanced whispering gallery mode lasing from hexagonal Al/ZnO microcavity. ACS Photonics 2015, 2, 73–77.

91

Wang, Y. Y.; Qin, F. F.; Lu, J. F.; Li, J. T.; Zhu, Z.; Zhu, Q. X.; Zhu, Y.; Shi, Z. L.; Xu, C. X. Plasmon enhancement for vernier coupled single-mode lasing from ZnO/Pt hybrid microcavities. Nano Res. 2017, 10, 3447–3456.

92

Wang, C. S.; Lin, H. Y.; Lin, J. M.; Chen, Y. F. Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles. Appl. Phys. Express 2012, 5, 062003.

93

Pei, J.; Jiang, D.; Zhao, M.; Duan, Q.; Liu, R.; Sun, L.; Guo, Z.; Hou, J.; Qin, J.; Li, B. Controlled enhancement range of the responsivity in ZnO ultraviolet photodetectors by Pt nanoparticles. Appl. Surf. Sci. 2016, 389, 1056–1061.

94

Lawrie, B. J.; Haglund, R. F.; Mu, R. Enhancement of ZnO photoluminescence by localized and propagating surface plasmons. Opt. Express 2009, 17, 2565–2572.

95

Lin, Y.; Li, J.; Xu, C.; Fan, X.; Wang, B. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower. Appl. Phys. Lett. 2014, 105, 142107–142111.

96

Cheng, C. W.; Sie, E. J.; Liu, B.; Huan, C. H. A.; Sum, T. C.; Sun, H. D.; Fan, H. J. Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles. Appl. Phys. Lett. 2010, 96, 071107.

97

Wang, Y. Y.; Xu, C. X.; Li, J. T.; Dai, J.; Lin, Y.; Zhu, G. Y.; Lu, J. F. Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles. Sci. Adv. Mater. 2015, 7, 1156–1162.

98

Qin, F. F.; Xu, C. X.; Zhu, Q. X.; Lu, J. F.; You, D. T.; Xu, W.; Zhu, Z.; Manohari, A. G.; Chen, F. Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons. Nanoscale 2018, 10, 623–627.

99

Qin, F. F.; Chang, N.; Xu, C. X.; Zhu, Q. X.; Wei, M.; Zhu, Z.; Chen, F.; Lu, J. F. Underlying mechanism of blue emission enhancement in Au decorated p-GaN film. RSC Adv. 2017, 7, 15071–15076.

100

Hwang, S. W.; Shin, D. H.; Kim, C. O.; Hong, S. H.; Kim, M. C.; Kim, J.; Lim, K. Y.; Kim, S.; Choi, S. -H.; Ahn, K. J. et al. Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films. Phys. Rev. Lett. 2010, 105, 127403.

101

Li, J. T.; Xu, C. X.; Nan, H. Y.; Jiang, M. M.; Gao, G. Y.; Lin, Y.; Dai, J.; Zhu, G. Y.; Ni, Z. H.; Wang, S. F. et al. Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity. ACS Appl. Mater. Interfaces 2014, 6, 10469–10475.

102

Zhu, Q. X.; Qin, F. F.; Lu, J. F.; Zhu, Z.; Nan, H. Y.; Shi, Z. L.; Ni, Z. H.; Xu, C. X. Synergistic graphene/aluminum surface plasmon coupling for zinc oxide lasing improvement. Nano Res. 2017, 10, 1996–2004.

103

Lu, J. F.; Li, J. T.; Xu, C. X.; Li, Y.; Dai, J.; Wang, Y. Y.; Lin, Y.; Wang, S. F. Direct resonant coupling of al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods. ACS Appl. Mater. Interfaces 2014, 6, 18301–18305.

104

Chen, J. S.; Žídek, K.; Abdellah, M.; Al-Marri, M. J.; Zheng, K. B.; Pullerits, T. Surface plasmon inhibited photo-luminescence activation in CdSe/ZnS core shell quantum dots. J. Phys. : Condens. Matter 2016, 28, 254001.

105

Chen, T.; Xing, G. Z.; Zhang, Z.; Chen, H. Y.; Wu, T. Tailoring the photoluminescence of ZnO nanowires using Au nanoparticles. Nanotechnology 2008, 19, 435711.

106

Mishra, Y. K.; Mohapatra, S.; Singhal, R.; Avasthi, D. K.; Agarwal, D. C.; Ogale, S. B. Au–ZnO: A tunable localized surface plasmonic nanocomposite. Appl. Phys. Lett. 2008, 92, 043107.

107

Cheng, P. H.; Li, D. S.; Yuan, Z. Z.; Chen, P. L.; Yang, D. R. Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film. Appl. Phys. Lett. 2008, 92, 041119.

108

Zhang, C.; Xu, H. Y.; Liu, W. Z.; Yang, L.; Zhang, J.; Zhang, L. X.; Wang, J. N.; Ma, J. G.; Liu, Y. C. Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon-localized surface plasmon couplings. Opt. Express 2015, 23, 15565–15574.

109

Mahanti, M.; Basak, D. Enhanced photoluminescence in Ag@SiO2 core shell nanoparticles coated ZnO nanorods. J. Lumin. 2014, 154, 535–540.

110

Liu, B. B.; Zhu, W. R.; Gunapala, S. D.; Stockman, M. I.; Premaratne, M. Open resonator electric spaser. ACS Nano 2017, 11, 12573–12582.

111

Noginov, M. A.; Zhu, G.; Belgrave, A. M.; Bakker, R.; Shalaev, V. M.; Narimanov, E. E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Demonstration of a spaser-based nanolaser. Nature 2009, 460, 1110–1112.

112

Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R. -M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 629–632.

113

Lu, J. F.; Jiang, M. M.; Wei, M.; Xu, C. X.; Wang, S. F.; Zhu, Z.; Qin, F. F.; Shi, Z. L.; Pan, C. F. Plasmon-induced accelerated exciton recombination dynamics in ZnO/Ag hybrid nanolasers. ACS Photonics 2017, 4, 2419–2424.

114

Lu, Y. -J.; Wang, C. -Y.; Kim, J.; Chen, H. -Y.; Lu, M. -Y.; Chen, Y. -C.; Chang, W. -H.; Chen, L. -J.; Stockman, M. I.; Shih, C. -K. et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett. 2014, 14, 4381–4388.

115

Chou, Y. -H.; Chou, B. -T.; Chiang, C. -K.; Lai, Y. -Y.; Yang, C. -T.; Li, H.; Lin, T. -R.; Lin, C. -C.; Kuo, H. -C.; Wang, S. -C. et al. Ultrastrong mode confinement in ZnO surface plasmon nanolasers. ACS Nano 2015, 9, 3978–3983.

116

Humar, M.; Yun, S. H. Intracellular microlasers. Nat. Photonics 2015, 9, 572–578.

117

Li, Z. -Y.; Xia, Y. N. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett. 2010, 10, 243–249.

118

Lu, J. F.; Xu, C. X.; Nan, H. Y.; Zhu, Q. X.; Qin, F. F.; Manohari, A. G.; Wei, M.; Zhu, Z.; Shi, Z. L.; Ni, Z. H. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection. Appl. Phys. Lett. 2016, 109, 073701.

119

Liu, Y. J.; Xu, C. X.; Lu, J. F.; Zhu, Z.; Zhu, Q. X.; Manohari, A. G.; Shi, Z. L. Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates. Appl. Surf. Sci. 2018, 427, 830–836.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 December 2017
Revised: 01 March 2018
Accepted: 12 March 2018
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61275054, 11604114 and 11734005) and Science and Technology Support Program of Jiangsu Province (No. BE2016177).

Return