Journal Home > Volume 11 , Issue 9

Predicting the properties of two-dimensional (2D) materials as graphene and hexagonal boron nitride (h-BN) monolayers after their growth on any given substrate is a major challenge. While the influence of the electron configuration of the atoms of the underlying surface is well-understood, the effect of substrate geometry still remains unclear. The structural properties of h-BN monolayers grown on a rectangularly packed Rh(110) surface were characterized in situ by ultrahigh vacuum scanning tunneling microscopy and were compared to those that this material exhibits when grown on substrates showing different crystallographic orientations. Although the h-BN monolayer grown on Rh(110) was dominated by a unique quasiunidimensional moiré pattern, suggesting considerable interface interaction, the moiré corrugation was unexpectedly smaller than those reported for strongly interacting interfaces with hexagonal-terminated substrates, owing to differences in the possible binding landscapes at interfaces with differently oriented substrates. Moreover, a rule was derived for predicting how interface corrugation and the existence and extent of subregions within moiré supercells containing favorable sites for orbital mixing between h-BN monolayers and their supports depend on substrate symmetry. These general symmetry considerations can be applied to numerous 2D materials, including graphene, thereby enabling the prediction of how substrate choice determines the properties of these materials. Furthermore, they could also provide new routes for tuning 2D material properties and for developing nanotemplates showing different geometries for growing adsorbate superlattices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Influence of metal support in-plane symmetry on the corrugation of hexagonal boron nitride and graphene monolayers

Show Author's information Antonio J. Martínez-Galera1( )José M. Gómez-Rodríguez1,2,3
Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridE-28049Spain
Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridE-28049Spain
nstituto Nicolás CabreraUniversidad Autónoma de MadridMadridE-28049Spain

Abstract

Predicting the properties of two-dimensional (2D) materials as graphene and hexagonal boron nitride (h-BN) monolayers after their growth on any given substrate is a major challenge. While the influence of the electron configuration of the atoms of the underlying surface is well-understood, the effect of substrate geometry still remains unclear. The structural properties of h-BN monolayers grown on a rectangularly packed Rh(110) surface were characterized in situ by ultrahigh vacuum scanning tunneling microscopy and were compared to those that this material exhibits when grown on substrates showing different crystallographic orientations. Although the h-BN monolayer grown on Rh(110) was dominated by a unique quasiunidimensional moiré pattern, suggesting considerable interface interaction, the moiré corrugation was unexpectedly smaller than those reported for strongly interacting interfaces with hexagonal-terminated substrates, owing to differences in the possible binding landscapes at interfaces with differently oriented substrates. Moreover, a rule was derived for predicting how interface corrugation and the existence and extent of subregions within moiré supercells containing favorable sites for orbital mixing between h-BN monolayers and their supports depend on substrate symmetry. These general symmetry considerations can be applied to numerous 2D materials, including graphene, thereby enabling the prediction of how substrate choice determines the properties of these materials. Furthermore, they could also provide new routes for tuning 2D material properties and for developing nanotemplates showing different geometries for growing adsorbate superlattices.

Keywords: graphene, hexagonal boron nitride, scanning tunneling microscopy, 2-dimensional materials, moiré superstructures, nanotemplates

References(68)

1

Oshima, C.; Nagashima, A. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. : Condes. Matter 1997, 9, 1.

2

Laskowski, R.; Blaha, P.; Schwarz, K. Bonding of hexagonal BN to transition metal surfaces: An ab initio density-functional theory study. Phys. Rev. B 2008, 78, 045409.

3

Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425.

4

Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852.

5

Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83–115.

6

Marchini, S.; Günther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 2007, 76, 075429.

7

de Parga, A. L. V.; Calleja, F.; Borca, B.; Passeggi, M. C. G.; Hinarejos, J. J.; Guinea, F.; Miranda, R. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 2008, 100, 056807.

8

Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

9

Grüneis, A.; Vyalikh, D. V. Tunable hybridization between electronic states of graphene and a metal surface. Phys. Rev. B 2008, 77, 193401.

10

Pletikosić, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett. 2009, 102, 056808.

11

Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.

12

Voloshina, E. N.; Dedkov, Y. S.; Torbrügge, S.; Thissen, A.; Fonin, M. Graphene on Rh(111): Scanning tunneling and atomic force microscopies studies. Appl. Phys. Lett. 2012, 100, 241606.

13

Rusponi, S.; Papagno, M.; Moras, P.; Vlaic, S.; Etzkorn, M.; Sheverdyaeva, P. M.; Pacile, D.; Brune, H.; Carbone, C. Highly anisotropic Dirac cones in epitaxial graphene modulated by an island superlattice. Phys. Rev. Lett. 2010, 105, 246803.

14

Martín-Recio, A.; Romero-Muñiz, C.; Martínez Galera, A. J.; Pou, P.; Pérez, R.; Gómez-Rodríguez, J. M. Tug-of-war between corrugation and binding energy: Revealing the formation of multiple moiré patterns on a strongly interacting graphene-metal system. Nanoscale 2015, 7, 11300–11309.

15

González-Herrero, H.; Pou, P.; Lobo-Checa, J.; Fernández-Torre, D.; Craes, F.; Martínez-Galera, A. J.; Ugeda, M. M.; Corso, M.; Enrique Ortega, J.; Gómez-Rodríguez, J. M. et al. Graphene tunable transparency to tunneling electrons: A direct tool to measure the local coupling. ACS Nano 2016, 10, 5131–5144.

16

Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic-structure of monolayer hexagonal boron-nitride physisorbed on metal surfaces. Phys. Rev. Lett. 1995, 75, 3918–3921.

17

Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.

18

Preobrajenski, A. B.; Vinogradov, A. S.; Mårtensson, N. Monolayer of h-BN chemisorbed on Cu(111) and Ni(111): The role of the transition metal 3d states. Surf. Sci. 2005, 582, 21–30.

19

Preobrajenski, A. B.; Vinogradov, A. S.; Ng, M. L.; Cavar, E.; Westerström, R.; Mikkelsen, A.; Lundgren, E.; Mårtensson, N. Influence of chemical interaction at the lattice-mismatched h-BN/Rh(111) and h-BN/Pt(111) interfaces on the overlayer morphology. Phys. Rev. B 2007, 75, 245412.

20

Preobrajenski, A. B.; Nesterov, M. A.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Monolayer h-BN on lattice-mismatched metal surfaces: On the formation of the nanomesh. Chem. Phys. Lett. 2007, 446, 119–123.

21

Brugger, T.; Günther, S.; Wang, B.; Dil, J. H.; Bocquet, M. L.; Osterwalder, J.; Wintterlin, J.; Greber, T. Comparison of electronic structure and template function of single-layer graphene and a hexagonal boron nitride nanomesh on Ru(0001). Phys. Rev. B 2009, 79, 045407.

22

Doll, G. L.; Speck, J. S.; Dresselhaus, G.; Dresselhaus, M. S.; Nakamura, K.; Tanuma, S. I. Intercalation of hexagonal boron nitride with potassium. J. Appl. Phys. 1989, 66, 2554–2558.

23

Usachov, D.; Adamchuk, V. K.; Haberer, D.; Grüneis, A.; Sachdev, H.; Preobrajenski, A. B.; Laubschat, C.; Vyalikh, D. V. Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis. Phys. Rev. B 2010, 82, 075415.

24

Brugger, T.; Ma, H. F.; Iannuzzi, M.; Berner, S.; Winkler, A.; Hutter, J.; Osterwalder, J.; Greber, T. Nanotexture switching of single-layer hexagonal boron nitride on rhodium by intercalation of hydrogen atoms. Angew. Chem., Int. Ed. 2010, 49, 6120–6124.

25

Larciprete, R.; Ulstrup, S.; Lacovig, P.; Dalmiglio, M.; Bianchi, M.; Mazzola, F.; Hornekaer, L.; Orlando, F.; Baraldi, A.; Hofmann, P. et al. Oxygen switching of the epitaxial graphene-metal interaction. ACS Nano 2012, 6, 9551–9558.

26

Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z. et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl. Phys. Lett. 2012, 100, 093101.

27

Petrović, M.; Rakić, I. Š.; Runte, S.; Busse, C.; Sadowski, J. T.; Lazić, P.; Pletikosić, I.; Pan, Z. H.; Milun, M.; Pervan, P. et al. The mechanism of caesium intercalation of graphene. Nat. Commun. 2013, 4, 2772.

28

Ng, M. L.; Shavorskiy, A.; Rameshan, C.; Mikkelsen, A.; Lundgren, E.; Preobrajenski, A.; Bluhm, H. Reversible modification of the structural and electronic properties of a boron nitride monolayer by Co intercalation. ChemPhysChem 2015, 16, 923–927.

29

Schröder, U. A.; Grånäs, E.; Gerber, T.; Arman, M. A.; Martínez-Galera, A. J.; Schulte, K.; Andersen, J. N.; Knudsen, J.; Michely, T. Etching of graphene on Ir(111) with molecular oxygen. Carbon 2016, 96, 320–331.

30

Martínez-Galera, A. J.; Schröder, U. A.; Huttmann, F.; Jolie, W.; Craes, F.; Busse, C.; Caciuc, V.; Atodiresei, N.; Blügel, S.; Michely, T. Oxygen orders differently under graphene: New superstructures on Ir(111). Nanoscale 2016, 8, 1932–1943.

31

Wan, J. Y.; Lacey, S. D.; Dai, J. Q.; Bao, W. Z.; Fuhrer, M. S.; Hu, L. B. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chem. Soc. Rev. 2016, 45, 6742–6765.

32

Schröder, U. A.; Petrovic, M.; Gerber, T.; Martínez-Galera, A. J.; Grånäs, E.; Arman, M. A.; Herbig, C.; Schnadt, J.; Kralj, M.; Knudsen, J. et al. Core level shifts of intercalated graphene. 2D Mater. 2017, 4, 015013.

33

Laskowski, R.; Blaha, P.; Gallauner, T.; Schwarz, K. Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) Surface. Phys. Rev. Lett. 2007, 98, 106802.

34

Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008, 78, 073401.

35

Gotterbarm, K.; Zhao, W.; Höfert, O.; Gleichweit, C.; Papp, C.; Steinrück, H. P. Growth and oxidation of graphene on Rh(111). Phys. Chem. Chem. Phys. 2013, 15, 19625–19631.

36

Orlando, F.; Larciprete, R.; Lacovig, P.; Boscarato, I.; Baraldi, A.; Lizzit, S. Epitaxial growth of hexagonal boron nitride on Ir(111). J. Phys. Chem. C 2012, 116, 157–164.

37

N'Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-dimensional Ir cluster lattice on a graphene moiré on Ir(111). Phys. Rev. Lett. 2006, 97, 215501.

38

Brihuega, I.; Michaelis, C. H.; Zhang, J.; Bose, S.; Sessi, V.; Honolka, J.; Schneider, M. A.; Enders, A.; Kern, K. Electronic decoupling and templating of Co nanocluster arrays on the boron nitride nanomesh. Surf. Sci. 2008, 602, L95–L99.

39

N'Diaye, A. T.; Gerber, T.; Busse, C.; Mysliveček, J.; Coraux, J.; Michely, T. A versatile fabrication method for cluster superlattices. New J. Phys. 2009, 11, 103045.

40

Donner, K.; Jakob, P. Structural properties and site specific interactions of Pt with the graphene/Ru(0001) moiré overlayer. J. Chem. Phys. 2009, 131, 164701.

41

Cavallin, A.; Pozzo, M.; Africh, C.; Baraldi, A.; Vesselli, E.; Dri, C.; Comelli, G.; Larciprete, R.; Lacovig, P.; Lizzit, S. et al. Local electronic structure and density of edge and facet atoms at Rh nanoclusters self-assembled on a graphene template. ACS Nano 2012, 6, 3034–3043.

42

Martínez-Galera, A. J.; Brihuega, I.; Gutiérrez-Rubio, A.; Stauber, T.; Gómez-Rodríguez, J. M. Towards scalable nano- engineering of graphene. Sci. Rep. 2014, 4, 7314.

43

Martínez-Galera, A. J.; Brihuega, I.; Gómez-Rodríguez, J. M. Influence of the rotational domain in the growth of transition metal clusters on graphene. J. Phys. Chem. C 2015, 119, 3572–3578.

44

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

45

Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

46

Hui, F.; Pan, C. B.; Shi, Y. Y.; Ji, Y. F.; Grustan-Gutierrez, E.; Lanza, M. On the use of two dimensional hexagonal boron nitride as dielectric. Microelectron. Eng. 2016, 163, 119–133.

47

Ji, Y. F.; Pan, C. B.; Zhang, M. Y.; Long, S. B.; Lian, X. J.; Miao, F.; Hui, F.; Shi, Y. Y.; Larcher, L.; Wu, E. et al. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown. Appl. Phys. Lett. 2016, 108, 012905.

48

Jiang, L. L.; Shi, Y. Y.; Hui, F.; Tang, K. C.; Wu, Q.; Pan, C. B.; Jing, X.; Uppal, H.; Palumbo, F.; Lu, G. Y. et al. Dielectric breakdown in chemical vapor deposited hexagonal boron nitride. ACS Appl. Mater. Interfaces 2017, 9, 39758–39770.

49

Custance, O.; Brochard, S.; Brihuega, I.; Artacho, E.; Soler, J. M.; Baró, A. M.; Gómez-Rodríguez, J. M. Single adatom adsorption and diffusion on Si(111)-(7×7) surfaces: Scanning tunneling microscopy and first-principles calculations. Phys. Rev. B 2003, 67, 235410.

50

Martínez-Galera, A. J.; Gómez-Rodríguez, J. M. Nucleation and growth of the prototype azabenzene 1, 3, 5-triazine on graphite surfaces at low temperatures. J. Phys. Chem. C 2011, 115, 11089–11094.

51

Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

52

Murray, P. W.; Leibsle, F. M.; Li, Y.; Guo, Q.; Bowker, M.; Thornton, G.; Dhanak, V. R.; Prince, K. C.; Rosei, R. Scanning-tunneling-microscopy study of the oxygen-induced reconstruction of Rh(110). Phys. Rev. B 1993, 47, 12976–12979.

53

Murray, P. W.; Leibsle, F. M.; Thornton, G.; Bowker, M.; Dhanak, V. R.; Baraldi, A.; Kiskinova, M.; Rosei, R. Nitrogen-induced reconstruction on Rh(110): Effect of oxygen on the growth and ordering of Rh-N chains. Surf. Sci. 1994, 304, 48–58.

54

Africh, C.; Esch, F.; Comelli, G.; Rosei, R. Dynamics of the O induced reconstruction of the Rh(110) surface: A scanning tunnelling microscopy study. J. Chem. Phys. 2001, 115, 477–481.

55

Günther, S.; Hoyer, R.; Marbach, H.; Imbihl, R.; Esch, F.; Africh, C.; Comelli, G.; Kiskinova, M. K and mixed K+O adlayers on Rh(110). J. Chem. Phys. 2006, 124, 014706.

56

Nguyen, L.; Liu, L. C.; Assefa, S.; Wolverton, C.; Schneider, W. F.; Tao, F. F. Atomic-scale structural evolution of Rh(110) during catalysis. ACS Catal. 2017, 7, 664–674.

57

Li, Q. C.; Zou, X. L.; Liu, M. X.; Sun, J. Y.; Gao, Y. B.; Qi, Y.; Zhou, X. B.; Yakobson, B. I.; Zhang, Y. F.; Liu, Z. F. Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111). Nano Lett. 2015, 15, 5804–5810.

58

N'Diaye, A. T.; Coraux, J.; Plasa, T. N.; Busse, C.; Michely, T. Structure of epitaxial graphene on Ir(111). New J. Phys. 2008, 10, 043033.

59

Chagas, T.; Cunha, T. H. R.; Matos, M. J. S.; dos Reis, D. D.; Araujo, K. A. S.; Malachias, A.; Mazzoni, M. S. C.; Ferlauto, A. S.; Magalhaes-Paniago, R. Room temperature observation of the correlation between atomic and electronic structure of graphene on Cu(110). RSC Adv. 2016, 6, 98001–98009.

60

Corso, M.; Greber, T.; Osterwalder, J. h-BN on Pd(110): A tunable system for self-assembled nanostructures? Surf. Sci. 2005, 577, L78–L84.

61

Vinogradov, N. A.; Zakharov, A. A.; Ng, M. L.; Mikkelsen, A.; Lundgren, E.; Martensson, N.; Preobrajenski, A. B. One-dimensional corrugation of the h-BN monolayer on Fe(110). Langmuir 2012, 28, 1775–1781.

62

Allan, M. P.; Berner, S.; Corso, M.; Greber, T.; Osterwalder, J. Tunable self-assembly of one-dimensional nanostructures with orthogonal directions. Nanoscale Res. Lett. 2007, 2, 94–99.

63

Müller, F.; Hüfner, S.; Sachdev, H. One-dimensional structure of boron nitride on chromium (110)-a study of the growth of boron nitride by chemical vapour deposition of borazine. Surf. Sci. 2008, 602, 3467–3476.

64

Vinogradov, N. A.; Zakharov, A. A.; Kocevski, V.; Rusz, J.; Simonov, K. A.; Eriksson, O.; Mikkelsen, A.; Lundgren, E.; Vinogradov, A. S.; Mårtensson, N. et al. Formation and structure of graphene waves on Fe(110). Phys. Rev. Lett. 2012, 109, 026101.

65

Müller, F.; Grandthyll, S. Monolayer formation of hexagonal boron nitride on Ag(001). Surf. Sci. 2013, 617, 207–210.

66

Grandthyll, S.; Jacobs, K.; Müller, F. Liquid-source growth of graphene on Ag(001). Phys. Status Solidi B-Basic Solid State Phys. 2015, 252, 1695–1699.

67

Rasool, H. I.; Song, E. B.; Mecklenburg, M.; Regan, B. C.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Atomic-scale characterization of graphene grown on copper (100) single crystals. J. Am. Chem. Soc. 2011, 133, 12536–12543.

68

Locatelli, A.; Wang, C.; Africh, C.; Stojić, N.; Mentes, T. O.; Comelli, G.; Binggeli, N. Temperature-driven reversible rippling and bonding of a graphene superlattice. ACS Nano 2013, 7, 6955–6963.

File
12274_2018_2045_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 December 2017
Revised: 09 February 2018
Accepted: 07 March 2018
Published: 14 April 2018
Issue date: September 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

Authors acknowledge financial support from AEI and FEDER under project MAT2016-77852-C2-2-R (AEI/FEDER, UE). A. J. M.-G. acknowledges funding from the Spanish MINECO through the Juan de la Cierva program (ref. IJCI-2014-19209).

Return