Journal Home > Volume 11 , Issue 9

Few-layered MoSe2 nanosheets with mixed 1T/2H phase were successfully arrayed on a Ti substrate (forming 1T@2H-MoSe2/Ti) through a facile one-step solvothermal process. After testing different synthesis conditions, it was found that the optimal process involves a temperature of 200 ℃ and a reaction time of 12 h. Structural characterizations reveal that the morphology of 1T@2H-MoSe2 consists of edge-terminated nanosheets with one to five layers, composed of a mixed 1T/2H phase dominated by the 1T one. The 1T@2H-MoSe2/Ti electrode shows excellent HER catalytic activity, with a small onset potential (-120 mV vs. reversible hydrogen electrode, RHE) and an electrode potential of only -133 mV (vs. RHE) to achieve a current density of 20 mA·cm-2. This excellent electrocatalytic activity is due to the synergistic effects of 1T metallic phase, few-layered nanosheet morphology, and direct growth of 1T@2H-MoSe2on the Ti substrate. In addition, the 1T@2H-MoSe2/Ti electrode shows excellent stability towards long-term electrolysis. This is due to the long-term stability of the valence states of Mo and Se, as shown by post-electrolysis X-ray photoelectron spectroscopy analysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: An efficient electrocatalytic electrode for hydrogen evolution reaction

Show Author's information Jingtong Zhang1Yalan Chen1Ming Liu1Kun Du1Yan Zhou1,2( )Yanpeng Li1Zhaojie Wang2Jun Zhang1( )
State Key Laboratory of Heavy Oil Processing China University of Petroleum (East China)Qingdao266580China
College of Science China University of Petroleum (East China)Qingdao266580China

Abstract

Few-layered MoSe2 nanosheets with mixed 1T/2H phase were successfully arrayed on a Ti substrate (forming 1T@2H-MoSe2/Ti) through a facile one-step solvothermal process. After testing different synthesis conditions, it was found that the optimal process involves a temperature of 200 ℃ and a reaction time of 12 h. Structural characterizations reveal that the morphology of 1T@2H-MoSe2 consists of edge-terminated nanosheets with one to five layers, composed of a mixed 1T/2H phase dominated by the 1T one. The 1T@2H-MoSe2/Ti electrode shows excellent HER catalytic activity, with a small onset potential (-120 mV vs. reversible hydrogen electrode, RHE) and an electrode potential of only -133 mV (vs. RHE) to achieve a current density of 20 mA·cm-2. This excellent electrocatalytic activity is due to the synergistic effects of 1T metallic phase, few-layered nanosheet morphology, and direct growth of 1T@2H-MoSe2on the Ti substrate. In addition, the 1T@2H-MoSe2/Ti electrode shows excellent stability towards long-term electrolysis. This is due to the long-term stability of the valence states of Mo and Se, as shown by post-electrolysis X-ray photoelectron spectroscopy analysis.

Keywords: nanosheets, electrocatalyst, hydrogen evolution, Ti plate

References(71)

1

Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

2

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

3

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

4

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

5

Duan, J. J.; Chen, S.; Chambers, B. A.; Andersson, G. G.; Qiao, S. Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 2015, 27, 4234–4241.

6

Li, H.; Tan, Y. W.; Liu, P.; Guo, C. G.; Luo, M.; Han, J. H.; Lin, T. Q.; Huang, F. Q.; Chen, M. W. Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Adv. Mater. 2016, 28, 8945–8949.

7

Du, N.; Wang, C. M.; Wang, X. J.; Lin, Y.; Jiang, J.; Xiong, Y. J. Trimetallic TriStar nanostructures: Tuning electronic and surface structures for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2016, 28, 2077–2084.

8

Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204.

9

Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909.

10

Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981–8065.

11

Ivanovskaya, A.; Singh, N.; Liu, R. F.; Kreutzer, H.; Baltrusaitis, J.; Van Nguyen, T.; Metiu, H.; McFarland, E. Transition metal sulfide hydrogen evolution catalysts for hydrobromic acid electrolysis. Langmuir 2013, 29, 480–492.

12

Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493.

13

Morales-Guio, C. G.; Hu, X. L. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 2014, 47, 2671–2681.

14

Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

15

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

16

Xiao, P.; Sk, M. A.; Thia, L.; Ge, X. M.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624–2629.

17

Stern, L. A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347–2351.

18

Laursen, A. B.; Patraju, K. R.; Whitaker, M. J.; Retuerto, M.; Sarkar, T.; Yao, N.; Ramanujachary, K. V.; Greenblatt, M.; Dismukes, G. C. Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ. Sci. 2015, 8, 1027–1034.

19

Wang, X. G.; Kolen'ko, Y. V.; Bao, X. Q.; Kovnir, K.; Liu, L. F. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew. Chem., Int. Ed. 2015, 54, 8188–8192.

20

Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

21

Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(Ⅱ) oxide nanoparticles anchored onto cobalt(Ⅳ) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546–8550.

22

Liu, Y. W.; Hua, X. M.; Xiao, C.; Zhou, T. F.; Huang, P. C.; Guo, Z. P.; Pan, B. C.; Xie, Y. Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 5087–5092.

23

Eng, A. Y. S.; Ambrosi, A.; Sofer, Z.; Šimek, P.; Pumera, M. Electrochemistry of transition metal dichalcogenides: Strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 2014, 8, 12185–12198.

24

Chia, X. Y.; Ambrosi, A.; Sofer, Z.; Luxa, J.; Pumera, M. Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 2015, 9, 5164–5179.

25

Saadi, F. H.; Carim, A. I.; Velazquez, J. M.; Baricuatro, J. H.; McCrory, C. C. L.; Soriaga, M. P.; Lewis, N. S. Operando synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction. ACS Catal. 2014, 4, 2866–2873.

26

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

27

Ambrosi, A.; Sofer, Z.; Pumera, M. 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 2015, 51, 8450–8453.

28

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

29

Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206.

30

Deng, S. J.; Zhong, Y.; Zeng, Y. X.; Wang, Y. D.; Yao, Z. J.; Yang, F.; Lin, S. W.; Wang, X. L.; Lu, X. H.; Xia, X. H. et al. Directional construction of vertical nitrogen-doped 1T-2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1700748.

31

Huang, Y. P.; Lu, H. Y.; Gu, H. H.; Fu, J.; Mo, S. Y.; Wei, C.; Miao, Y. E.; Liu, T. X. A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale 2015, 7, 18595–18602.

32

Yin, Y.; Zhang, Y. M.; Gao, T. L.; Yao, T.; Zhang, X. H.; Han, J. C.; Wang, X. J.; Zhang, Z. H.; Xu, P.; Zhang, P. et al. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv. Mater. 2017, 29, 1700311.

33

Shi, W. W.; Wang, Z. G.; Fu, Y. Q. Rhenium doping induced structural transformation in mono-layered MoS2 with improved catalytic activity for hydrogen evolution reaction. J. Phys. D: Appl. Phys. 2017, 50, 405303.

34

Shi, W. W.; Wang, Z. G.; Fu, Y. Q. Mechanical bending induced catalytic activity enhancement of monolayer 1T'-MoS2 for hydrogen evolution reaction. J. Nanopart. Res. 2017, 19, 296.

35

Jiang, M.; Zhang, J. J.; Wu, M. H.; Jian, W. J.; Xue, H. T.; Ng, T. W.; Lee, C. S.; Xu, J. Synthesis of 1T-MoSe2 ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 14949–14953.

36

Zhang, J. Y.; Wang, T. T.; Liu, P. T.; Liu, Y. G.; Ma, J.; Gao, D. Q. Enhanced catalytic activities of metal-phase-assisted 1T@2H-MoSe2 nanosheets for hydrogen evolution. Electrochim. Acta 2016, 217, 181–186.

37

Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972.

38

Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.

39

Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Huang, Y.; Liu, K. L.; Cheng, Z. Z.; Jiang, C.; He, J. Recent advances in transition- metal dichalcogenide based nanomaterials for water splitting. Nanoscale 2015, 7, 19764–19788.

40

Jamesh, M. I. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J. Power Sources 2016, 333, 213–236.

41

Xu, X. Y.; Zhou, G.; Dong, X. F.; Hu, J. G. Interface band engineering charge transfer for 3D MoS2 photoanode to boost photoelectrochemical water splitting. ACS Sustainable Chem. Eng. 2017, 5, 3829–3836.

42

Wang, H.; Min, S. X.; Wang, Q.; Li, D. B.; Casillas, G.; Ma, C.; Li, Y. Y.; Liu, Z. X.; Li, L. J.; Yuan, J. Y. et al. Nitrogen-doped nanoporous carbon membranes with Co/CoP Janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. ACS Nano 2017, 11, 4358–4364.

43

Xiong, D. H.; Li, W.; Liu, L. F. Vertically aligned porous nickel(Ⅱ) hydroxide nanosheets supported on carbon paper with long-term oxygen evolution performance. Chem. -Asian J. 2017, 12, 543–551.

44

Zhou, Y.; Xiao, H. Q.; Zhang, S.; Li, Y. P.; Wang, S. T.; Wang, Z. J.; An, C. H.; Zhang, J. Interlayer expanded lamellar CoSe2 on carbon paper as highly efficient and stable overall water splitting electrodes. Electrochim. Acta 2017, 241, 106–115.

45

Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2016, 10, 2342–2348.

46

Wang, K.; Ye, Z. G.; Liu, C. Q.; Xi, D.; Zhou, C. J.; Shi, Z. Q.; Xia, H. Y.; Liu, G. W.; Qiao, G. J. Morphology-controllable synthesis of cobalt telluride branched nanostructures on carbon fiber paper as electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 2910–2916.

47

Wang, X. G.; Li, W.; Xiong, D. H.; Petrovykh, D. Y.; Liu, L. F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2016, 26, 4067–4077.

48

Zhang, Z.; Liu, Y. D.; Ren, L.; Zhang, H.; Huang, Z. Y.; Qi, X.; Wei, X. L.; Zhong, J. X. Three-dimensional-networked Ni-Co-Se nanosheet/nanowire arrays on carbon cloth: A flexible electrode for efficient hydrogen evolution. Electrochim. Acta 2016, 200, 142–151.

49

Chen, X. S.; Liu, G. B.; Zheng, W.; Feng, W.; Cao, W. W.; Hu, W. P.; Hu, P. A. Vertical 2D MoO2/MoSe2 core-shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2016, 26, 8537–8544.

50

Liu, Y. D.; Ren, L.; Zhang, Z.; Qi, X.; Li, H. X.; Zhong, J. X. 3D binder-free MoSe2 nanosheets/carbon cloth electrodes for efficient and stable hydrogen evolution prepared by simple electrophoresis deposition strategy. Sci. Rep. 2016, 6, 22516.

51

Qu, B.; Yu, X. B.; Chen, Y. J.; Zhu, C. L.; Li, C. Y.; Yin, Z. X.; Zhang, X. T. Ultrathin MoSe2 nanosheets decorated on carbon fiber cloth as binder-free and high-performance electrocatalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 2015, 7, 14170–14175.

52

Liu, B.; Zhao, Y. F.; Peng, H. Q.; Zhang, Z. Y.; Sit, C. K.; Yuen, M. F.; Zhang, T. R.; Lee, C. S.; Zhang, W. J. Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: An all-pH highly efficient integrated electrocatalyst for hydrogen evolution. Adv. Mater. 2017, 29, 1606521.

53

Amin, B. G.; Swesi, A. T.; Masud, J.; Nath, M. CoNi2Se4 as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2017, 53, 5412–5415.

54

Chen, X. J.; Zeng, G. F.; Gao, T. T.; Jin, Z. Y.; Zhang, Y. J.; Yuan, H. Y.; Xiao, D. In situ formation of high performance Ni-phytate on Ni-foam for efficient electrochemical water oxidation. Electrochem. Commun. 2017, 74, 42–47.

55

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

56

Liu, X.; Zhang, J. Z.; Huang, K. J.; Hao, P. Net-like molybdenum selenide-acetylene black supported on Ni foam for high-performance supercapacitor electrodes and hydrogen evolution reaction. Chem. Eng. J. 2016, 302, 437–445.

57

Amin, M. A.; Fadlallah, S. A.; Alosaimi, G. S. In situ aqueous synthesis of silver nanoparticles supported on titanium as active electrocatalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2014, 39, 19519–19540.

58

Pu, Z. H.; Liu, Q.; Tang, C.; Asiri, A. M.; Sun, X. P. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 2014, 6, 11031–11034.

59

Pu, Z. H.; Tang, C.; Luo, Y. L. Ferric phosphide nanoparticles film supported on titanium plate: A high-performance hydrogen evolution cathode in both acidic and neutral solutions. Int. J. Hydrogen Energy 2015, 40, 5092–5098.

60

Shi, J. L.; Hu, J. M. Molybdenum sulfide nanosheet arrays supported on Ti plate: An efficient hydrogen-evolving cathode over the whole pH range. Electrochi. Acta 2015, 168, 256–260.

61

Wang, L.; Zhang, X.; Ma, Y.; Yang, M.; Qi, Y. X. Supercapacitor performances of the MoS2/CoS2 nanotube arrays in situ grown on Ti plate. J. Phys. Chem. C 2017, 121, 9089–9095.

62

Pu, Z. H.; Liu, Q.; Jiang, P.; Asiri, A. M.; Obaid, A. Y.; Sun, X. P. CoP nanosheet arrays supported on a Ti plate: An efficient cathode for electrochemical hydrogen evolution. Chem. Mater. 2014, 26, 4326–4329.

63

Lv, J. H.; Yang, M.; Liang, T. X.; Ken, S.; Hideo, M. The effect of reduced graphene oxide on MoS2 for the hydrogen evolution reaction in acidic solution. Chem. Phys. Lett. 2017, 678, 212–215.

64

Xiao, H. Q.; Wang, S. T.; Wang, C.; Li, Y. Y.; Zhang, H. R.; Wang, Z. J.; Zhou, Y.; An, C. H.; Zhang, J. Lamellar structured CoSe2 nanosheets directly arrayed on Ti plate as an efficient electrochemical catalyst for hydrogen evolution. Electrochim. Acta 2016, 217, 156–162.

65

Luo, Z. G.; Zhou, J.; Wang, L. R.; Fang, G. Z.; Pan, A. Q.; Liang, S. Q. Two-dimensional hybrid nanosheets of few layered MoSe2 on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries. J. Mater. Chem. A 2016, 4, 15302–15308.

66

Sun, X. L.; Wang, Z. G.; Li, Z. J.; Fu, Y. Q. Origin of structural transformation in mono- and bi-layered molybdenum disulfide. Sci. Rep. 2016, 6, 26666.

67

Wypych, F.; Schöllhorn, R. 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc., Chem. Commun. 1992, 1386–1388.

68

Zhao, W.; Ding, F. Energetics and kinetics of phase transition between a 2H and a 1T MoS2 monolayer—a theoretical study. Nanoscale 2017, 9, 2301–2309.

69

Wu, Z. Z.; Tang, C. Y.; Zhou, P.; Liu, Z. H.; Xu, Y. S.; Wang, D. Z.; Fang, B. Z. Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS2. J. Mater. Chem. A 2015, 3, 13050–13056.

70

Gao, M. R.; Yao, W. T.; Yao, H. B.; Yu, S. H. Synthesis of unique ultrathin lamellar mesostructured CoSe2-amine (protonated) nanobelts in a binary solution. J. Am. Chem. Soc. 2009, 131, 7486–7487.

71

Chen, R.; Yang, C. J.; Cai, W. Z.; Wang, H. Y.; Miao, J. W.; Zhang, L. P.; Chen, S. L.; Liu, B. Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2017, 2, 1070–1075.

File
12274_2018_2040_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 September 2017
Revised: 10 February 2018
Accepted: 02 March 2018
Published: 20 March 2018
Issue date: September 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors thank the financial supports provided by Fundamental Research Funds for the Central Universities (No. 16CX05016A), Shandong Provincial Natural Science Foundation, China (No. ZR2017QB015), and the National Natural Science Foundation of China (Nos. 51402362 and 21471160). J. Z. gratefully acknowledges the financial support from Taishan Scholar Project.

Return