Journal Home > Volume 11 , Issue 6

Enabling Si photoanodes for efficient solar water oxidation would facilitate the development of solar fuel conversion, but it is challenging owing to Si surface passivation via photo-induced corrosion in aqueous electrolytes. To overcome this challenge, most approaches have focused on improving the stability of Si by coating dense and thin protective layers using high vacuum-based techniques such as atomic layer deposition. However, these procedures are costly, making scalability for practical applications difficult. Herein, we report a modified electroless deposition (ELD) method to uniformly deposit protective and catalytic Ni films on Si wafers, resulting in efficient and stable Si photoanodes for solar water oxidation. The optimized Ni/n-Si photoanode achieves an onset potential of ~ 1.09 V vs. a reversible hydrogen electrode and a saturation current density of ~ 27.5 mA/cm2 under AM 1.5 G illumination at pH 14. The ELD method is additionally capable of Ni deposition on a 4-inch n-Si wafer, demonstrating the first 4-inch Si photoanode. The solar water oxidation of the ELD-Ni/n-Si photoanode can be further improved by surface texturing, built-in n–p junctions, or coupling with more efficient catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enabling silicon photoanodes for efficient solar water splitting by electroless-deposited nickel

Show Author's information Jiheng ZhaoThomas Mark GillXiaolin Zheng( )
Department of Mechanical EngineeringStanford UniversityStanford94305USA

Abstract

Enabling Si photoanodes for efficient solar water oxidation would facilitate the development of solar fuel conversion, but it is challenging owing to Si surface passivation via photo-induced corrosion in aqueous electrolytes. To overcome this challenge, most approaches have focused on improving the stability of Si by coating dense and thin protective layers using high vacuum-based techniques such as atomic layer deposition. However, these procedures are costly, making scalability for practical applications difficult. Herein, we report a modified electroless deposition (ELD) method to uniformly deposit protective and catalytic Ni films on Si wafers, resulting in efficient and stable Si photoanodes for solar water oxidation. The optimized Ni/n-Si photoanode achieves an onset potential of ~ 1.09 V vs. a reversible hydrogen electrode and a saturation current density of ~ 27.5 mA/cm2 under AM 1.5 G illumination at pH 14. The ELD method is additionally capable of Ni deposition on a 4-inch n-Si wafer, demonstrating the first 4-inch Si photoanode. The solar water oxidation of the ELD-Ni/n-Si photoanode can be further improved by surface texturing, built-in n–p junctions, or coupling with more efficient catalysts.

Keywords: electroless plating, photoelectrochemical water splitting, Ni deposition, Si photoanode, oxygen evolution reaction (OER)

References(22)

1

Zhao, J. H.; Guo, Y.; Cai, L. L.; Li, H.; Wang, K. X.; Cho, I. S.; Lee, C. H.; Fan, S. H.; Zheng, X. L. High-performance ultrathin BiVO4 photoanode on textured polydimethylsiloxane substrates for solar water splitting. ACS Energy Lett. 2016, 1, 68-75.

2

Sun, K.; McDowell, M. T.; Nielander, A. C.; Hu, S.; Shaner, M. R.; Yang, F.; Brunschwig, B. S.; Lewis, N. S. Stable solar-driven water oxidation to O2(g) by Ni-oxide-coated silicon photoanodes. J. Phys. Chem. Lett. 2015, 6, 592-598.

3

Yu, X. W.; Yang, P.; Chen, S.; Zhang, M.; Shi, G. Q. NiFe alloy protected silicon photoanode for efficient water splitting. Adv. Energy Mater. 2017, 7, 1601805.

4

Loget, G.; Fabre, B.; Fryars, S.; Meriadec, C.; Ababou-Girard, S. Dispersed Ni nanoparticles stabilize silicon photoanodes for efficient and inexpensive sunlight-assisted water oxidation. ACS Energy Lett. 2017, 2, 569-573.

5

Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005-1009.

6

Kim, T. W.; Choi, K. -S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990-994.

7

Kenney, M. J.; Gong, M.; Li, Y. G.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836-840.

8

Scheuermann, A. G.; Lawrence, J. P.; Kemp, K. W.; Ito, T.; Walsh, A.; Chidsey, C. E. D.; Hurley, P. K.; McIntyre, P. C. Design principles for maximizing photovoltage in metal- oxide-protected water-splitting photoanodes. Nat. Mater. 2016, 15, 99-105.

9

Zhao, J. H.; Cai, L. L.; Li, H.; Shi, X. J.; Zheng, X. L. Stabilizing silicon photocathodes by solution-deposited Ni-Fe layered double hydroxide for efficient hydrogen evolution in alkaline media. ACS Energy Lett. 2017, 2, 1939-1946.

10

Zhou, X. H.; Liu, R.; Sun, K.; Friedrich, D.; McDowell, M. T.; Yang, F.; Omelchenko, S. T.; Saadi, F. H.; Nielander, A. C.; Yalamanchili, S. et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ. Sci. 2015, 8, 2644-2649.

11

Hill, J. C.; Landers, A. T.; Switzer, J. A. An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation. Nat. Mater. 2015, 14, 1150-1155.

12

Sun, K.; Shen, S. H.; Liang, Y. Q.; Burrows, P. E.; Mao, S. S.; Wang, D. L. Enabling silicon for solar-fuel production. Chem. Rev. 2014, 114, 8662-8719.

13

Sun, K.; Saadi, F. H.; Lichterman, M. F.; Hale, W. G.; Wang, H. P.; Zhou, X. H.; Plymale, N. T.; Omelchenko, S. T.; He, J. H.; Papadantonakis, K. M. et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Proc. Natl. Acad. Sci. USA 2015, 112, 3612-3617.

14

Hu, G. H.; Wu, H. H.; Yang, F. Z. Direct electroless nickel plating on silicon surface. Chin. Sci. Bull. 2004, 49, 2363-2367.

15

Niwa, D.; Homma, T.; Osaka, T. Deposition mechanism of Ni on Si(100) surfaces in aqueous alkaline solution. J. Phys. Chem. B 2004, 108, 9900-9904.

16

Chen, Y. W.; Prange, J. D.; Dühnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 2011, 10, 539-544.

17

Mei, B.; Permyakova, A. A.; Frydendal, R.; Bae, D.; Pedersen, T.; Malacrida, P.; Hansen, O.; Stephens, I. E. L.; Vesborg, P. C. K.; Seger, B. et al. Iron-treated NiO as a highly transparent p-type protection layer for efficient Si-based photoanodes. J. Phys. Chem. Lett. 2014, 5, 3456-3461.

18

Lee, C. H.; Kim, J. H.; Zou, C. Y.; Cho, I. S.; Weisse, J. M.; Nemeth, W.; Wang, Q.; van Duin, A. C. T.; Kim, T. S.; Zheng, X. L. Peel-and-stick: Mechanism study for efficient fabrication of flexible/transparent thin-film electronics. Sci. Rep. 2013, 3, 2917.

19

Rodriguez, J.; Zhang, W.; Lim, S.; Lennon, A. Improved metal adhesion with galvanic nickel plating to silicon solar cells. Sol. Energy Mat. Sol. Cell. 2017, 165, 17-26.

20

Sun, K.; Park, N.; Sun, Z. L.; Zhou, J. G.; Wang, J.; Pang, X. L.; Shen, S. H.; Noh, S. Y.; Jing, Y.; Jin, S. H. et al. Nickel oxide functionalized silicon for efficient photo-oxidation of water. Energy Environ. Sci. 2012, 5, 7872-7877.

21

Khasin, A. A.; Yur'eva, T. M.; Kaichev, V. V.; Zaikovskii, V. I.; Demeshkina, M. P.; Minyukova, T. P.; Baronskaya, N. A.; Bukhtiyarov, V. I.; Parmon, V. N. Structure of the active component and catalytic properties of catalysts prepared by the reduction of layered nickel aluminosilicates. Kinet. Catal. 2006, 47, 412-422.

22

Shalvoy, R. B.; Reucroft, P. J.; Davis, B. H. Characterization of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy. J. Catal. 1979, 56, 336-348.

File
12274_2018_2038_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 January 2018
Revised: 21 February 2018
Accepted: 26 February 2018
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-1542152.

Return