Journal Home > Volume 11 , Issue 8

Development of low-cost and high-performance catalysts for hydrogen generation via hydrolysis of ammonia borane (NH3BH3, AB) is a highly desirable pathway for future hydrogen utilization. In this work, Ni nanocatalysts doped with CeOx and supported on graphene (Ni-CeOx/graphene) were synthesized via a facile chemical reduction route and applied as robust catalysts for the hydrolysis of AB in aqueous solution at room temperature. The as-synthesized Ni-CeOx/graphene nanocomposites (NCs) exhibited excellent catalytic activity with a turnover frequency (TOF) as high as 68.2 min-1, which is 49-fold higher than that for a simple Ni nanoparticle catalyst and is among the highest values reported for non-noble metal catalysts in AB hydrolysis. The development of efficient and low-cost Ni-CeOx/graphene catalysts enhances the feasibility of using ammonia borane as a chemical hydrogen storage material, which may find application ina hydrogen fuel-cell based economy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane

Show Author's information Qilu Yao1Zhang-Hui Lu1( )Yuwen Yang1Yuzhen Chen2Xiangshu Chen1( )Hai-Long Jiang2( )
Institute of Advanced Materials (IAM)College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchang330022China
Hefei National Laboratory for Physical Sciences at the MicroscaleCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230026China

Abstract

Development of low-cost and high-performance catalysts for hydrogen generation via hydrolysis of ammonia borane (NH3BH3, AB) is a highly desirable pathway for future hydrogen utilization. In this work, Ni nanocatalysts doped with CeOx and supported on graphene (Ni-CeOx/graphene) were synthesized via a facile chemical reduction route and applied as robust catalysts for the hydrolysis of AB in aqueous solution at room temperature. The as-synthesized Ni-CeOx/graphene nanocomposites (NCs) exhibited excellent catalytic activity with a turnover frequency (TOF) as high as 68.2 min-1, which is 49-fold higher than that for a simple Ni nanoparticle catalyst and is among the highest values reported for non-noble metal catalysts in AB hydrolysis. The development of efficient and low-cost Ni-CeOx/graphene catalysts enhances the feasibility of using ammonia borane as a chemical hydrogen storage material, which may find application ina hydrogen fuel-cell based economy.

Keywords: catalysis, graphene, nickel, ammonia borane, hydrogen generation

References(67)

1

Chen, P.; Xiong, Z. T.; Luo, J. Z.; Lin, J. Y.; Tan, K. L. Interaction of hydrogen with metal nitrides and imides. Nature 2002, 420, 302–304.

2

Yan, H.; Lin, Y.; Wu, H.; Zhang, W. H.; Sun, Z. H.; Cheng, H.; Liu, W.; Wang, C. L.; Li, J. J.; Huang, X. H. et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 2017, 8, 1070.

3

Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484–7487.

4

Zhang, J. J.; Kang, Q.; Yang, Z. Q.; Dai, H. B.; Zhuang, D. W.; Wang, P. A cost-effective NiMoB-La(OH)3 catalyst for hydrogen generation from decomposition of alkaline hydrous hydrazine solution. J. Mater. Chem. A 2013, 1, 11623–11628.

5

Peng, B.; Chen, J. Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy Environ. Sci. 2008, 1, 479–483.

6

Wang, J.; Li, W.; Wen, Y. R.; Gu, L.; Zhang, Y. Rh-Ni-B nanoparticles as highly efficient catalysts for hydrogen generation from hydrous hydrazine. Adv. Energy Mater. 2015, 5, 1401879.

7

Tang, C.; Zhang, R.; Lu, W. B.; He, L. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P. Fe-doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 2017, 29, 1602441.

8

Bi, Q. Y.; Lin, J. D.; Liu, Y. M.; He, H. Y.; Huang F. Q.; Cao, Y. Dehydrogenation of formic acid at room temperature: Boosting palladium nanoparticle efficiency by coupling with pyridinic-nitrogen-doped carbon. Angew. Chem., Int. Ed. 2016, 55, 11849–11853.

9

Chandra, M.; Xu, Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 2006, 156, 190–194.

10

Demirci, U. B.; Miele, P. Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ. Sci. 2009, 2, 627–637.

11

Zhan, W.; Zhu, Q. L.; Xu, Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts. ACS Catal. 2016, 6, 6892–6905.

12

Kang, J. X.; Chen, T. W.; Zhang, D. F.; Guo, L. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation. Nano Energy 2016, 23, 145–152.

13

Zhang, H.; Gu, X. J.; Liu, P. L.; Song, J.; Cheng, J.; Su, H. Q. Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride. J. Mater. Chem. A 2017, 5, 2288–2296.

14

Lu, Z. H.; Li, J. P.; Zhu, A. L.; Yao, Q. L.; Huang, W.; Zhou, R. Y.; Zhou, R. F.; Chen, X. S. Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage. Int. J. Hydrogen Energy 2013, 38, 5330–5337.

15

Gutowska, A.; Li, L. Y.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W. et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem., Int. Ed. 2005, 44, 3578–3582.

16

Jiang, H. L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 2011, 170, 56–63.

17

Chen, W. Y.; Li, D. L.; Wang, Z. J.; Qian, G.; Sui, Z. J.; Duan, X. Z.; Zhou, X. G.; Yeboah, I.; Chen, D. Reaction mechanism and kinetics for hydrolytic dehydrogenation of ammonia borane on a Pt/CNT catalyst. AIChE J. 2017, 63, 60–65.

18

Ge, Y. Z.; Ye, W. Y.; Shah, Z. H.; Lin, X. J.; Lu, R. W.; Zhang, S. F. PtNi/NiO clusters coated by hollow sillica: Novel design for highly efficient hydrogen production from ammonia-borane. ACS Appl. Mater. Interfaces 2017, 9, 3749–3756.

19

Zhou, L. M.; Meng, J.; Li, P.; Tao, Z. L.; Mai, L. Q.; Chen, J. Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane. Mater. Horiz. 2017, 4, 268–273.

20

Yao, Q. L.; Lu, Z. H.; Zhang, Z. J.; Chen, X. S.; Lan, Y. Q. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Sci. Rep. 2014, 4, 7597.

21

Chen, W. Y.; Ji, J.; Feng, X.; Duan, X. Z.; Qian, G.; Li, P.; Zhou, X. G.; Chen, D.; Yuan, W. K. Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2014, 136, 16736–16739.

22

Khalily, M. A.; Eren, H.; Akbayrak, S.; Susapto, H. H.; Biyikli, N.; Özkar, S.; Guler, M. O. Facile synthesis of three-dimensional Pt-TiO2 nano-networks: A highly active catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew. Chem., Int. Ed. 2016, 55, 12257–12261.

23

Akbayrak, S.; Tonbul, Y.; Özkar, S. Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane. Appl. Catal. B: Environ. 2016, 198, 162–170.

24

Akbayrak, S.; Özkar, S. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane. ACS Appl. Mater. Interfaces 2012, 4, 6302–6310.

25

Yao, Q. L.; Shi, W. M.; Feng, G.; Lu, Z. H.; Zhang, X. L.; Tao, D. J.; Kong, D. J.; Chen, X. S. Ultrafine Ru nanoparticles embedded in SiO2 nanospheres: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. J. Power Sources 2014, 257, 293–299.

26

Yao, Q. L.; Lu, Z. H.; Jia, Y. S.; Chen, X. S.; Liu, X. In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis. Int. J. Hydrogen Energy 2015, 40, 2207–2215.

27

Metin, O.; Mazumder, V.; Özkar, S.; Sun, S. S. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469.

28

Li, P. Z.; Aijaz, A.; Xu, Q. Highly dispersed surfactant-free nickel nanoparticles and their remarkable catalytic activity in the hydrolysis of ammonia borane for hydrogen generation. Angew. Chem., Int. Ed. 2012, 51, 6753–6756.

29

Peng, C. Y.; Kang, L.; Cao, S.; Chen, Y.; Lin, Z. S.; Fu, W. F. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia–borane. Angew. Chem., Int. Ed. 2015, 54, 15725–15729.

30

Yao, Q. L.; Lu, Z. H.; Huang, W.; Chen, X. S.; Zhu, J. Highly Pt-like activity of Ni-Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane. J. Mater. Chem. A 2016, 4, 8579–8583.

31

Chen, G. Z.; Desinan, S.; Rosei, R.; Rosei, F.; Ma, D. L. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane. Chem. Eur. J. 2012, 18, 7925–7930.

32

Li, P. Z.; Aranishi, K.; Xu, Q. ZIF-8 immobilized nickel nanoparticles: Highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem. Commun. 2012, 48, 3173–3175.

33

Cao, C. Y.; Chen, C. Q.; Li, W.; Song, W. G.; Cai, W. Nanoporous nickel spheres as highly active catalyst for hydrogen generation from ammonia borane. ChemSusChem 2010, 3, 1241–1244.

34

Lu, Z. H.; Li, J. P.; Feng, G.; Yao, Q. L.; Zhang, F.; Zhou, R. Y.; Tao, D. J.; Chen, X. S.; Yu, Z. Q. Synergistic catalysis of MCM-41 immobilized Cu-Ni nanoparticles in hydrolytic dehydrogeneration of ammonia borane. Int. J. Hydrogen Energy 2014, 39, 13389–13395.

35

Du, X. Q.; Yang, C. L.; Zeng, X.; Wu, T.; Zhou, Y. H.; Cai, P.; Cheng, G. Z.; Luo, W. Amorphous NiP supported on rGO for superior hydrogen generation from hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2017, 42, 14181–14187.

36

Zhang, J. K.; Chen, C. Q.; Yan, W. J.; Duan, F. F.; Zhang, B.; Gao, Z.; Qin, Y. Ni Nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from the hydrolysis of ammonia borane. Catal. Sci. Technol. 2016, 6, 2112–2119.

37

De, S.; Zhang, J. G.; Luque; R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347.

38

Zhou, L. M.; Zhang, T. R.; Tao, Z. L.; Chen, J. Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane. Nano Res. 2014, 7, 774–781.

39

Du, J.; Cheng, F. Y.; Si, M.; Liang, J. Tao, Z. L.; Chen, J. Nanoporous Ni-based catalysts for hydrogen generation from hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2013, 38, 5768–5774.

40

Yang, X. J.; Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Carbon-supported Ni1-x@Ptx (x = 0.32, 0.43, 0.60, 0.67, and 0.80) core–shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2011, 36, 1984–1990.

41

Zhu, Q. L.; Xu, Q. Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem. 2016, 1, 220–245.

42

Wang, J.; Zhang, X. B.; Wang, Z. L.; Wang, L. M.; Zhang, Y. Rhodium-nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy Environ. Sci. 2012, 5, 6885–6888.

43

Yang, L.; Luo, W.; Cheng, G. Z. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane. ACS Appl. Mater. Interfaces 2013, 5, 8231–8240.

44

Wang, Y.; Arandiyan, H.; Scott, J.; Bagheri, A.; Dai, H. X.; Amal, R. Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: A review. J. Mater. Chem. A 2017, 5, 8825–8846.

45

Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Sea, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271.

46

Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Pt@CeO2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications, J. Am. Chem. Soc. 2013, 135, 15864–15872.

47

Song, S. Y.; Li, K.; Pan, J.; Wang, F.; Li, J. Q.; Feng, J.; Yao, S.; Ge, X.; Wang, X.; Zhang, H. J. Achieving the trade-off between selectivity and activity in semihydrogenation of alkynes by fabrication of (asymmetrical Pd@Ag core)@(CeO2 shell) nanocatalysts via autoredox reaction. Adv. Mater. 2017, 29, 1605332.

48

Zhu, F. F.; Chen, G. Z.; Sun, S. X.; Sun, X. In situ growth of Au@CeO2 core–shell nanoparticles and CeO2 nanotubes from Ce(OH)CO3 nanorods. J. Mater. Chem. A 2013, 1, 288–294.

49

Du, X. Q.; Liu, C.; Du, C.; Cai, P.; Cheng, G. Z.; Luo, W. Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature. Nano Res. 2017, 10, 2856–2865.

50

Zhang, Z. J.; Lu, Z. H.; Tan, H. L.; Chen, X. S.; Yao, Q. L. CeOx-modified RhNi nanoparticles grown on rGO as highly efficient catalysts for complete hydrogen generation from hydrazine borane and hydrazine. J. Mater. Chem. A 2015, 3, 23520–23529.

51

Yao, Q. L.; Shi, Y.; Zhang, X. L.; Chen, X. S.; Lu, Z. H. Facile synthesis of platinum–cerium(Ⅳ) oxide hybrids arched on reduced graphene oxide catalyst in reverse micelles with high activity and durability for hydrolysis of ammonia borane. Chem. Asian J. 2016, 11, 3251–3257.

52

Yan, J. M.; Zhang, X. B.; Han, S.; Shioyama, H.; Xu, Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew. Chem., Int. Ed. 2008, 47, 2287–2289.

53

Shishkin, M.; Ziegler, T. The electronic structure and chemical properties of a Ni/CeO2 anode in a solid oxide fuel cell: A DFT + U study. J. Phys. Chem. C 2010, 114, 21411–21416.

54

Hahn, K. R.; Seitsonen, A. P.; Iannuzzi, M.; Hutter, J. Functionalization of CeO2(111) by deposition of small Ni clusters: Effects on CO2 adsorption and O vacancy formation. ChemCatChem 2015, 7, 625–634.

55

Hou, C. C.; Li, Q.; Wang, C. J.; Peng, C. Y.; Chen, Q. Q.; Ye, H. F.; Fu, W. F.; Che, C. M.; López, N.; Chen, Y. Ternary Ni–Co–P nanoparticles as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane. Energy Environ. Sci. 2017, 10, 1770–1776.

56

Feng, K.; Zhong, J.; Zhao, B. H.; Zhang, H.; Xu, L.; Sun, X. H.; Lee, S. T. CuxCo1–xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia–borane. Angew. Chem., Int. Ed. 2016, 55, 11950–11954.

57

Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Xu, Q. Monodispersed CuCo nanoparticles supported on diamine-functionalized graphene as a non-noble metal catalyst for hydrolytic dehydrogenation of ammonia borane. ChemNanoMat 2016, 2, 942–945.

58

Liu, P. L.; Gu, X. J.; Kang, K.; Zhang, H.; Cheng; J.; Su, H. Q. Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks. ACS Appl. Mater. Interfaces 2017, 9, 10759–10767.

59

Yen, H.; Seo, Y.; Kaliaguine, S.; Kleitz, F. Role of metal-support interactions, particle size, and metal-metal synergy in CuNi nanocatalysts for H2 generation. ACS Catal. 2015, 5, 5505–5511.

60

Yan, J. M.; Zhang, X. B.; Shioyama, H.; Xu, Q. Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles. J. Power Sources 2010, 195, 1091–1094.

61

Wang, C. L.; Tuninetti, J.; Wang, Z.; Zhang, C.; Ciganda, R.; Salmon, L.; Moya, S.; Ruiz, J.; Astruc, D. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: High efficiency, mechanism, and controlled hydrogen release. J. Am. Chem. Soc. 2017, 139, 11610–11615.

62

Yang, Y. W.; Lu, Z. H.; Hu, Y. J.; Zhang, Z. J.; Shi, W. M.; Chen, X. S.; Wang, T. T. Facile In situ synthesis of copper nanoparticles supported on reduced graphene oxide for hydrolytic dehydrogenation of ammonia borane. RSC Adv. 2014, 4, 13749–13752.

63

Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. J. Power Sources 2006, 163, 364–370.

64

Akbayrak, S.; Taneroglu, O.; Özkar, S. Nanoceria supported cobalt(0) nanoparticles: A magnetically separable and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane. New J. Chem. 2017, 41, 6546–6552.

65

Liao, J. Y.; Li, H.; Zhang, X. B.; Feng, K. J.; Yao, Y. L. Fabrication of a Ti-supported NiCo2O4 nanosheet array and its superior catalytic performance in the hydrolysis of ammonia borane for hydrogen generation. Catal. Sci. Technol. 2016, 6, 3893–3899.

66

Yao, Q. L.; Yang, K.; Hong, X. L.; Chen, X. S.; Lu, Z. H. Base-promoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles. Catal. Sci. Technol. 2018, 8, 870–877.

67

Li, Z.; He, T.; Liu, L.; Chen, W. D.; Zhang, M.; Wu, G. T.; Chen, P. Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: From mechanistic study to catalyst design. Chem. Sci. 2017, 8, 781–788.

File
12274_2018_2031_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 December 2017
Revised: 12 February 2018
Accepted: 18 February 2018
Published: 13 March 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21763012, 21463012, 21371162, 21673213, and 21521001), the Natural Science Foundation of Jiangxi Province of China (Nos. 20171ACB21021 and 2016BAB203087), and the National Research Fund for Fundamental Key Project (No. 2014CB931803).

Return