Journal Home > Volume 11 , Issue 8

A novel approach of combining conventional infrared spectroscopy (IR) and atomic force microscopy (AFM) is presented to better understand the behavior of a drug adsorbed on a metal substrate at the nanoscale level. Tip-enhanced infrared nanospectroscopy (TEIRA) was used for the first time to investigate Lu AA33810, a selective brain-penetrating Y5 receptor antagonist, after immobilization on gold nanoparticles (GNPs). Here, a gold coated AFM tip and gold substrate were used to obtain the near-field electromagnetic field trapping effect. Because of the huge signal enhancement, it was possible to obtain the spectral information regarding the self-assembled monolayer of the investigated molecule. The effect of two orthogonal polarizations (p- and s-polarization modulations) of the excitation laser beam on the spectral patterns is also discussed. The results show that there is a strong relationship between the state of polarization of the incident radiation and the relative infrared band intensities. Another factor affecting the observed spectral differences is the topology of the metal substrate, which may result in the induction of a cross-polarization effect. The performed analysis indicates that the C–C bond from the cyclohexyl group is oriented almost parallel to the metal surface. Conversely, the p- and s-polarized spectral variations suggest that the O=S=O angle is high enough to enable the simultaneous interaction of both oxygen atoms with the GNPs.


menu
Abstract
Full text
Outline
About this article

Polarization effect in tip-enhanced infrared nanospectroscopy studies of the selective Y5 receptor antagonist Lu AA33810

Show Author's information Natalia Piergies1,§( )Ewa Pięta1,§( )Czesława Paluszkiewicz1Helena Domin2Wojciech M. Kwiatek1
Institute of Nuclear PhysicsPolish Academy of Sciences, PL-31342, KrakowPoland
Institute of PharmacologyPolish Academy of Sciences, Department of Neurobiology, 31-343, Krakow, Smetna Street 12Poland

§ Natalia Piergies and Ewa Pięta contributed equally to this work.

Abstract

A novel approach of combining conventional infrared spectroscopy (IR) and atomic force microscopy (AFM) is presented to better understand the behavior of a drug adsorbed on a metal substrate at the nanoscale level. Tip-enhanced infrared nanospectroscopy (TEIRA) was used for the first time to investigate Lu AA33810, a selective brain-penetrating Y5 receptor antagonist, after immobilization on gold nanoparticles (GNPs). Here, a gold coated AFM tip and gold substrate were used to obtain the near-field electromagnetic field trapping effect. Because of the huge signal enhancement, it was possible to obtain the spectral information regarding the self-assembled monolayer of the investigated molecule. The effect of two orthogonal polarizations (p- and s-polarization modulations) of the excitation laser beam on the spectral patterns is also discussed. The results show that there is a strong relationship between the state of polarization of the incident radiation and the relative infrared band intensities. Another factor affecting the observed spectral differences is the topology of the metal substrate, which may result in the induction of a cross-polarization effect. The performed analysis indicates that the C–C bond from the cyclohexyl group is oriented almost parallel to the metal surface. Conversely, the p- and s-polarized spectral variations suggest that the O=S=O angle is high enough to enable the simultaneous interaction of both oxygen atoms with the GNPs.

Keywords: adsorption, gold nanoparticles, tip-enhanced infrared nanospectroscopy, polarization modulation, Y5 receptor antagonist

References(52)

1

Goswami, A.; Dhandaria, P.; Pal, S.; McGee, R.; Khan, F.; Antić, Z.; Gaikwad, R.; Prashanthi, K.; Thundat, T. Effect of interface on mid-infrared photothermal response of MoS2 thin film grown by pulsed laser deposition. Nano Res. 2017, 10, 3571–3584.

2

Vitry, P.; Rebois, R.; Bourillot, E.; Deniset-Besseau, A.; Virolle, M. J.; Lesniewska, E.; Dazzi A. Combining infrared and mode synthesizing atomic force microscopy: Application to the study of lipid vesicles inside Streptomyces bacteria. Nano Res. 2016, 9, 1674–1681.

3

Aroca, R. F.; Ross, D. J.; Domingo, C. Surface-enhanced infrared spectroscopy. Appl. Spectrosc. 2004, 58, 324A–338A.

4

Hartstein, A.; Kirtley, J. R.; Tsang, J. C. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers. Phys. Rev. Lett. 1980, 45, 201–204.

5

Qian, H. M.; Xu, M.; Li, X. W.; Ji, M. W.; Cheng, L.; Shoaib, A.; Liu, J. J.; Jiang L.; Zhu, H. S.; Zhang, J. T. Surface micro/nanostructure evolution of Au–Ag alloy nanoplates: Synthesis, simulation, plasmonic photothermal and surface-enhanced Raman scattering applications. Nano Res. 2016, 9, 876–885.

6

Khlebtsov, B.; Khanadeev, V.; Khlebtson, N. Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Res. 2016, 9, 2303–2318.

7

Wang, Y. D.; Lu, N.; Wang, W. T.; Liu, L. X.; Feng, L. F.; Zeng, Z. F.; Li, H. B.; Xu, W. Q.; Wu, Z. J.; Hu, W. et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.

8

Osawa, M. Surface-enhanced infrared absorption. In Near-Field Optics and Surface Plasmon Polaritons. Kawata, S., Ed.; Springer-Verlag: Berlin, Heidelberg, 2001; pp 163–187.

9

Joshi, P.; Chakraborti, S.; Ramirez-Vick, J. E.; Ansari, Z. A.; Shanker, V.; Chakrabarti, P.; Singh, S. P. The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloid. Surface B 2012, 95, 195–200.

10

Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliver Rev. 2012, 64, 24–36.

11

El-Ansary, A.; Faddah L. M. Nanoparticles as biochemical sensors. Nanotechnol. Sci. Appl. 2010, 3, 65–76.

12

Wang, E. C.; Wang A. Z. Nanoparticles and their applications in cell and molecular biology. Integr. Biol. 2014, 6, 9–26.

13

Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Adv. Drug Deliver Rev. 2014, 71, 2–14.

14

Lipiec, E.; Sekine, R.; Bielecki, J.; Kwiatek, W. M.; Wood, B. R. Molecular characterization of DNA double strand breaks with tip-enhanced Raman scattering. Angew. Chem. 2014, 126, 173–176.

15

Święch, D.; Ozaki, Y.; Kim, Y.; Proniewicz, E. Surface- and tip-enhanced Raman scattering of bradykinin onto the colloidal suspended Ag surface. Phys. Chem. Chem. Phys. 2015, 17, 17140–17149.

16

Lu, F.; Jin, M. Z.; Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photonics 2014, 8, 307–312.

17

Ruggeri, F. S.; Vieweg, S.; Cendrowska, U.; Longo, G.; Chiki, A.; Lashuel, H. A.; Dietler G. Nanoscale studies link amyloid maturity with polyglutamine diseases onset. Sci. Rep. 2016, 6, 31155.

18

Dazzi, A.; Prazeres, R.; Glotin, F.; Ortega, J. M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 2005, 30, 2388–2390.

19

Dazzi, A.; Prazeres, R.; Glotin, F.; Ortega, J. M. Subwavelength infrared spectromicroscopy using an AFM as a local absorption sensor. Infrared Phys. Technol. 2006, 49, 113–121.

20

Dazzi, A.; Prater, C. B. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 2017, 117, 5146–5173.

21

Petibois, C.; Piccinini, M.; Guidi, M. C.; Marcelli, A. Facing the challenge of biosample imaging by FTIR with a synchrotron radiation source. J. Synchrotron Rad. 2010, 17, 1–11.

22

Nasse, M. J.; Walsh, M. J.; Mattson, E. C.; Reininger, R.; Kajdacsy-Balla, A.; Macias, V.; Bhargava, R.; Hirschmugl, C. J. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat. Methods 2011, 8, 413–416.

23

Reddy, R. K.; Walsh, M. J.; Schulmerich, M. V.; Carney, P. S.; Bhargava, R. High-definition infrared spectroscopic imaging. Appl. Spectrosc. 2013, 67, 93–105.

24

Findlay, C. R.; Wiens, R.; Rak, M.; Sedlmair, J.; Hirschmugl, C. J.; Morrison, J.; Mundy, C. J.; Kansiz, M.; Gough, K. M. Rapid biodiagnostic ex vivo imaging at 1 μm pixel resolution with thermal source FTIR FPA. Analyst 2015, 140, 2493–2503.

25

Dazzi, A.; Prater, C. B.; Hu, Q. C.; Chase, D. B.; Rabolt, J. F.; Marcott, C. AFM-IR: Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl. Spectrosc. 2012, 66, 1365–1384.

26

Centrone, A.; Lahiri, B.; Holland, G. E. Chemical imaging beyond the diffraction limit using photothermal induced resonance microscopy. Microsc. Anal. 2013, 27, 6–9.

27

Ruggeri, F. S.; Habchi, J.; Cerreta, A.; Dietler, G. AFM-based single molecule techniques: Unraveling the amyloid Pathogenic Species. Curr. Pharm. Design 2016, 22, 3950–3970.

28

Paluszkiewicz, C.; Piergies, N.; Chaniecki, P.; Rękas, M.; Miszczyk, J.; Kwiatek, W. M. Differentiation of protein secondary structure in clear and opaque human lenses: AFM–IR studies. J. Pharmaceut. Biomed. 2017, 139, 125–132.

29

Jackson, M.; Mantsch, H. H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. 1995, 30, 95–120.

30

Greenler, R. G. Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys. 1966, 44, 310–315.

31

Ras, H. A. R.; Schoonheydt, R. A.; Johnston, C. T. Relation between s-polarized and p-polarized internal reflection spectra: Application for the spectral resolution of perpendicular vibrational modes. J. Phys. Chem. A 2007, 111, 8787–8791.

32

Frey, B. L.; Corn, R. M.; Weibel, S. C. Polarization-modulation approaches to reflection-absorption spectroscopy. In Handbook of Vibrational Spectroscopy. Griffiths, P. R., Ed.; John Wiley & Sons: New York, 2001; pp 1042–1056.

33

Paluszkiewicz, C.; Handke, M.; Aleksandrowicz, R. Application of FT-IR spectroscopy to phosphate coatings on electrotechnical iron sheets. J. Mol. Structure 1984, 114, 433–436.

34

Handke, M.; Paluszkiewicz, C. FTIR spectra of thin inorganic coatings on metals. Infrared Phys. 1984, 24, 121–128.

35

Handke, M.; Milosevic, M.; Harrick, N. J. External reflection Fourier transform infrared spectroscopy: Theory and experimental problems. Vibrat. Spectrosc. 1991, 1, 251–262.

36

Guo, P. -F.; Huang, W. -Y.; Liu, H. -B.; Xiao, S. -J. AFM and multiple transmission-reflection infrared spectroscopy (MTR-IR) studies on formation of air-stable supported lipid bilayers. Int. J. Mol. Sci. 2009, 10, 1407–1418.

37

Ataka, K.; Stripp, S. T.; Heberle, J. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim. Biophys. Acta 2013, 1828, 2283–2293.

38

Osawa, M.; Ataka, K.; Yoshii, K.; Yotsuyanagi, T. Surface-enhanced infrared ATR spectroscopy for in situ studies of electrode/electrolyte interfaces. J. Electron Spectrosc. Related Phenomena 1993, 64–65, 371–379.

39

Aroca, R. SERS/SERRS, the analytical tool. In Surface-Enhanced Vibrational Spectroscopy. Aroca, R., Ed.; John Wiley & Sons Ltd: Chichester, UK, 2006; pp 164–176.

40

Walker, M. W.; Wolinsky, T. D.; Jubian, V.; Chandrasena, G.; Zhong, H. L.; Huang, X. Y.; Miller, S.; Hegde, L. G.; Marsteller, D. A.; Marzabadi, M. R. et al. The novel neuropeptide Y Y5 receptor antagonist Lu AA33810 [N-[[trans-4-[(4, 5-Dihydro[1]benzothiepino[5, 4-d]thiazol-2-yl)amino]cyclohexyl] methyl]-methanesulfonamide] exerts anxiolytic- and antidepressant-like effects in rat models of stress sensitivity. J. Pharmacol. Exp. Ther. 2009, 328, 900–911.

41

Packiarajan, M.; Marzabadi, M. R.; Desai, M.; Lu, Y. L.; Noble, S. A.; Wong, W. C.; Jubian, V.; Chandrasena, G.; Wolinsky, T. D.; Zhong, H. L. et al. Discovery of Lu AA33810: A highly selective and potent NPY5 antagonist with in vivo efficacy in a model of mood disorder. Bioorg. Med. Chem. Lett. 2011, 21, 5436–5441.

42

Heilig, M. The NPY system in stress, anxiety and depression. Neuropeptides 2004, 38, 213–224.

43

Morales-Medina, J. C.; Dumont, Y.; Quirion, R. A possible role of neuropeptide Y in depression and stress. Brain Res. 2010, 1314, 194–205.

44

Domin, H.; Szewczyk, B.; Pochwat, B.; Woźniak, M.; Śmiałowska, M. Antidepressant-like activity of the neuropeptide Y Y5 receptor antagonist Lu AA33810: Behavioral, molecular, and immunohistochemical evidence. Psychopharmacology. 2017, 234, 631–645.

45

Pięta, E.; Piergies, N.; Oćwieja, M.; Domin, H.; Paluszkiewicz, C.; Bielańska, E.; Kwiatek, W. M. Monitoring the interfacial behavior of selective Y5 receptor antagonist on colloidal gold nanoparticle surfaces: Surface-enhanced vibrational spectroscopy studies. J. Phys. Chem. C 2017, 121, 17276–17288.

46

Domin, H.; Pięta, E.; Piergies, N.; Święch, D.; Kim, Y. Proniewicz, L. M.; Proniewicz, E. Neuropeptide Y and its C-terminal fragments acting on Y2 receptor: Raman and SERS spectroscopy studies. J. Colloid Interf. Sci. 2015, 437, 111–118.

47

Lahiri, B.; Holland, G.; Aksyuk, V.; Centrone, A. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique. Nano Lett. 2013, 13, 3218–3224.

48

Chae, J.; Lahiri, B.; Centrone A. Engineering near-field seira enhancements in plasmonic resonators. ACS Photonics 2016, 3, 87–95.

49

Pięta, E.; Paluszkiewicz, C.; Oćwieja, M.; Kwiatek, W. M. Potential drug-nanosensor conjugates: Raman, infrared absorption, surface-enhanced Raman, and density functional theory investigations of indolic molecules. Appl. Surf. Sci. 2017, 404, 168–179.

50

Purcell, S. M.; Barker, P. F. Tailoring the optical dipole force for molecules by field-induced alignment. Phys. Rev. Lett. 2009, 103, 153001.

51

Yu, Y. Q.; Lin, K.; Zhou, X. G.; Wang, H.; Liu, S. L.; Ma, X. X. New C-H stretching vibrational spectral features in the Raman spectra of gaseous and liquid ethanol. J. Phys. Chem. C 2007, 111, 8971–8978.

52

Leverette, C. L.; Jacobs, S. A.; Shanmukh, S.; Chaney, S. B.; Dluhy, R. A.; Zhao, Y. -P. Aligned silver nanorod arrays as substrates for surface-enhanced infrared absorption spectroscopy. Appl. Spectrosc. 2006, 60, 906–913.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 November 2017
Revised: 12 February 2018
Accepted: 18 February 2018
Published: 04 April 2018
Issue date: August 2018

Copyright

© The author(s) 2018

Acknowledgements

Acknowledgements

The research was performed by the use of the equipment purchased in the frame of the project co-funded by the Małopolska Regional Operational Program Measure 5.1 Krakow Metropolitan Area as an important hub of the European Research Area for 2007–2013 (No. MRPO.05.01.00–12–013/15). This work was also supported by the National Science Centre Poland (No. 2016/21/D/ ST4/02178 to N. P. and 2017/01/X/ST4/00428 to E. P.). The authors gratefully acknowledge M. Oćwieja, Ph. D, J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, for GNPs synthesis.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return