Journal Home > Volume 11 , Issue 6

Two-dimensional (2D) materials such as graphene and hexagonal boron nitride (h-BN) can be used as robust and flexible encapsulation overlayers, which effectively protect metal cores but allow reactions to occur between inner cores and outer shells. Here, we demonstrate this concept by showing that Pt@h-BN core–shell nanocatalysts present enhanced performances in H2/O2 fuel cells. Electrochemical (EC) tests combined with operando EC-Raman characterizations were performed to monitor the reaction process and its intermediates, which confirm that Pt-catalyzed electrocatalytic processes happen under few-layer h-BN covers. The confinement effect of the h-BN shells prevents Pt nanoparticles from aggregating and helps to alleviate the CO poisoning problem. Accordingly, embedding nanocatalysts within ultrathin 2D material shells can be regarded as an effective route to design high-performance electrocatalysts.

File
12274_2018_2029_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2017
Revised: 12 February 2018
Accepted: 18 February 2018
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21688102, 91545204, 21522508, and 21621063), Ministry of Science and Technology of China (Nos. 2016YFA0200200 and 2017YFB0602205), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020200), DICP DMTO201502, and DICP & QIBEBT UN201707.

Return