Journal Home > Volume 11 , Issue 8

A novel integrated nanobiocatalyst system based on an enzyme@silica nanoflower@metal-organic framework (enzyme@SNF@ZIF-8) structure with improved stability is fabricated for the first time. The versatility of this system is validated using penicillin G acylase (PGA) and catalase (CAT) as model enzymes. The microporous ZIF-8 layer can be controlled by varying the number of ZIF-8 coating cycles, which produces PGA@SNF@ZIF-8 nanobiocatalysts with different ZIF-8 layer thicknesses. After the second ZIF-8 coating cycle, a PGA@SNF@ZIF-8(2) structure with a homogeneous and well-intergrown ZIF-8 layer is formed, which possesses excellent mechanical and chemical stability. Moreover, PGA@SNF@ZIF-8(2) shows improved thermal/storage stability and reusability compared with free PGA and PGA immobilized on silica nanoflowers (PGA@SNF). The obtained CAT-based nanobiocatalysts (CAT@SNF@ZIF-8(2)) also show excellent catalytic performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability

Show Author's information Yingjie Du1Jing Gao1,2Huajiao Liu1Liya Zhou1Li Ma1Ying He1Zhihong Huang1Yanjun Jiang1,2( )
School of Chemical Engineering and TechnologyHebei University of Technology8 Guangrong RoadHongqiao DistrictTianjin300130China
Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy SavingHebei University of Technology8 Guangrong RoadHongqiao DistrictTianjin300130China

Abstract

A novel integrated nanobiocatalyst system based on an enzyme@silica nanoflower@metal-organic framework (enzyme@SNF@ZIF-8) structure with improved stability is fabricated for the first time. The versatility of this system is validated using penicillin G acylase (PGA) and catalase (CAT) as model enzymes. The microporous ZIF-8 layer can be controlled by varying the number of ZIF-8 coating cycles, which produces PGA@SNF@ZIF-8 nanobiocatalysts with different ZIF-8 layer thicknesses. After the second ZIF-8 coating cycle, a PGA@SNF@ZIF-8(2) structure with a homogeneous and well-intergrown ZIF-8 layer is formed, which possesses excellent mechanical and chemical stability. Moreover, PGA@SNF@ZIF-8(2) shows improved thermal/storage stability and reusability compared with free PGA and PGA immobilized on silica nanoflowers (PGA@SNF). The obtained CAT-based nanobiocatalysts (CAT@SNF@ZIF-8(2)) also show excellent catalytic performance.

Keywords: hybrids, immobilization, metal-organic framework, silica nanoflower, nanobiocatalyst

References(54)

1

Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258–268.

2

Ariga, K.; Ji, Q. M.; Mori, T.; Naito, M.; Yamauchi, Y.; Abe, H.; Hill, J. P. Enzyme nanoarchitectonics: Organization and device application. Chem. Soc. Rev. 2013, 42, 6322–6345.

3

Adlercreutz, P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 2013, 42, 6406–6436.

4

Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R. C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904.

5

Liu, J. L.; Fu, Y.; Fu, X. B.; Li, Y. X.; Liang, D. K.; Song, Y.; Pan, C. Y.; Yu, G. P.; Xiao, X. X. Nanoscale porous triazine-based frameworks with cyanate ester linkages for efficient drug delivery. RSC Adv. 2016, 6, 20834–20842.

6

Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R. C.; Fernandez-Lafuente, R. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 2015, 33, 435–456.

7

Mateo, C.; Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J. M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 2007, 40, 1451–1463.

8

Rodrigues, R. C.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307.

9

Fernandez-Lafuente, R. Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme Microb. Technol. 2009, 45, 405–418.

10

Hernandez, K.; Fernandez-Lafuente, R. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb. Technol. 2011, 48, 107–122.

11

Li, X. M.; Zhou, L.; Wei, Y.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Anisotropic growth-induced synthesis of dualcompartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 2014, 136, 15086–15092.

12

Polshettiwar, V.; Cha, D.; Zhang, X. X.; Basset, J. M. High-surface-area silica nanospheres (kcc-1) with a fibrous morphology. Angew. Chem. 2010, 122, 9846–9850.

13

Chen, Z. W.; Zhao, C. Q.; Ju, E. G.; Ji, H. W.; Ren, J. S.; Binks, B. P.; Qu, X. G. Design of surface-active artificial enzyme particles to stabilize pickering emulsions for highperformance biphasic biocatalysis. Adv. Mater. 2016, 28, 1682–1688.

14

Lin, Y. H.; Li, Z. H.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials 2013, 34, 2600–2610.

15

Gao, J.; Kong, W. X.; Zhou, L. Y.; He, Y.; Ma, L.; Wang, Y.; Yin, L. Y.; Jiang, Y. J. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chem. Eng. J. 2017, 309, 70–79.

16

Liu, L. Z.; Yu, W.; Luo, D.; Xue, Z. J.; Qin, X. Y.; Sun, X. H.; Zhao, J. C.; Wang, J. L.; Wang, T. Catalase nanocapsules protected by polymer shells for scavenging free radicals of tobacco smoke. Adv. Funct. Mater. 2015, 25, 5159–5165.

17

Romero, O.; Guisán, J. M.; Illanes, A.; Wilson, L. Reactivation of penicillin acylase biocatalysts: Effect of the intensity of enzyme-support attachment and enzyme load. J. Mol. Catal. B: Enzym. 2012, 74, 224–229.

18

Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

19

Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.

20

Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Mahy, J. -P.; Steunou, N.; Serre, C. Metal-organic frameworks: A novel host platform for enzymatic catalysis and detection. Mater. Horiz. 2017, 4, 55–63.

21

Wang, S. H.; Fan, Y.; Jia, X. Q. Sodium dodecyl sulfateassisted synthesis of hierarchically porous ZIF-8 particles for removing mercaptan from gasoline. Chem. Eng. J. 2014, 256, 14–22.

22

Cheng, H. J.; Zhang, L.; He, J.; Guo, W. J.; Zhou, Z. Y.; Zhang, X. J.; Nie, S. M.; Wei, H. Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal. Chem. 2016, 88, 5489–5497.

23

Hu, Y. H.; Cheng, H. J.; Zhao, X. Z.; Wu, J. X.; Muhammad, F.; Lin, S. C.; He, J.; Zhou, L. Q.; Zhang, C. P.; Deng, Y. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558–5566.

24

Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. GOx@ZIF-8(NiPd) nanoflower: An artificial enzyme system for tandem catalysis. Angew. Chem., Int. Ed. 2017, 56, 16082–16085.

25

Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.

26

Raja, D. S.; Liu, W. -L.; Huang, H. -Y.; Lin, C. -H. Immobilization of protein on nanoporous metal-organic framework materials. Comments Inorg. Chem. 2015, 35, 331–349.

27

Wu, X. L.; Ge, J.; Yang, C.; Hou, M.; Liu, Z. Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment. Chem. Commun. 2015, 51, 13408–13411.

28

Lyu, F. J.; Zhang, Y. F.; Zare, R. N.; Ge, J.; Liu, Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett. 2014, 14, 5761–5765.

29

Avci, C.; Ariñez-Soriano, J.; Carné-Sánchez, A.; Guillerm, V.; Carbonell, C.; Imaz, I.; Maspoch, D. Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals. Angew. Chem., Int. Ed. 2015, 127, 14625–14629.

30

Wang, C. Z.; Tadepalli, S.; Luan, J. Y.; Liu, K. -K.; Morrissey, J. J.; Kharasch, E. D.; Naik, R. R.; Singamaneni, S. Metal-organic framework as a protective coating for biodiagnostic chips. Adv. Mater. 2017, 29, 1604433.

31

Xue, P.; Xu, F.; Xu, L. D. Epoxy-functionalized mesostructured cellular foams as effective support for covalent immobilization of penicillin G acylase. Appl. Surf. Sci. 2008, 255, 1625–1630.

32

Xi, B. J.; Tan, Y. C.; Zeng, H. C. A general synthetic approach for integrated nanocatalysts of metal-silica@ZIFs. Chem. Mater. 2016, 28, 326–336.

33

Lee, H. J.; Cho, W.; Oh, M. Advanced fabrication of metal-organic frameworks: Template-directed formation of polystyrene@ZIF-8 core-shell and hollow ZIF-8 microspheres. Chem. Commun. 2012, 48, 221–223.

34

Huang, G.; Yin, D. M.; Wang, L. M. A general strategy for coating metal-organic frameworks on diverse components and architectures. J. Mater. Chem. A 2016, 4, 15106–15116.

35

He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organicframework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

36

Li, S. B.; Dharmarwardana, M.; Welch, R. P.; Ren, Y. X.; Thompson, C. M.; Smaldone, R. A.; Gassensmith, J. J. Template-directed synthesis of porous and protective core-shell bionanoparticles. Angew. Chem. 2016, 128, 10849–10854.

37

Sorribas, S.; Zornoza, B.; Téllez, C.; Coronas, J. Ordered mesoporous silica-(ZIF-8) core-shell spheres. Chem. Commun. 2012, 48, 9388–9390.

38

Arrua, R. D.; Peristyy, A.; Nesterenko, P. N.; Das, A.; D'Alessandro, D. M.; Hilder, E. F. UIO-66@SiO2 core-shell microparticles as stationary phases for the separation of small organic molecules. Analyst 2017, 142, 517–524.

39

Yu, D. B.; Wu, B.; Ran, J.; Ge, L.; Wu, L.; Wang, H. T.; Xu, T. W. An ordered ZIF-8-derived layered double hydroxide hollow nanoparticles-nanoflake array for high efficiency energy storage. J. Mater. Chem. A 2016, 4, 16953–16960.

40

Feng, Q.; Hou, D. Y.; Zhao, Y.; Xu, T.; Menkhaus, T. J.; Fong, H. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization. ACS Appl. Mater. Interfaces 2014, 6, 20958–20967.

41

Koohshekan, B.; Divsalar, A.; Saiedifar, M.; Saboury, A. A.; Ghalandari, B.; Gholamian, A.; Seyedarabi, A. Protective effects of aspirin on the function of bovine liver catalase: A spectroscopy and molecular docking study. J. Mol. Liq. 2016, 218, 8–15.

42

Mohy Eldin, M. S.; El Enshasy, H. A.; Hassan, M. E.; Haroun, B.; Hassan, E. A. Covalent immobilization of penicillin G acylase onto amine-functionalized PVC membranes for 6-APA production from penicillin hydrolysis process. Ⅱ. Enzyme immobilization and characterization. J. Appl. Polym. Sci. 2012, 125, 3820–3828.

43

Fernandez-Lafuente, R.; Rosell, C. M.; Rodriguez, V.; Guisan, J. M. Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents. Enzyme Microb. Technol. 1995, 17, 517–523.

44

Balcão, V. M.; Mateo, C.; Fernández-Lafuente, R.; Malcata, F. X.; Guisán, J. M. Structural and functional stabilization of l-asparaginase via multisubunit immobilization onto highly activated supports. Biotechnol. Prog. 2001, 17, 537–542.

45

Correro, M. R.; Moridi, N.; Schützinger, H.; Sykora, S.; Ammann, E. M.; Peters, E. H.; Dudal, Y.; Corvini, P. F. X.; Shahgaldian, P. Enzyme shielding in an enzyme-thin and soft organosilica layer. Angew. Chem. 2016, 128, 6393–6397.

46

Parui, S.; Manna, R. N.; Jana, B. Destabilization of hydrophobic core of chicken villin headpiece in guanidinium chloride induced denaturation: Hint of p-cation interaction. J. Phys. Chem. B 2016, 120, 9599–9607.

47

Ganguly, P.; van der Vegt, N. F. A.; Shea, J. -E. Hydrophobic association in mixed urea-TMAO solutions. J. Phys. Chem. Lett. 2016, 7, 3052–3059.

48

van't Hag, L.; Gras, S. L.; Conn, C. E.; Drummond, C. J. Lyotropic liquid crystal engineering moving beyond binary compositional space-ordered nanostructured amphiphile self-assembly materials by design. Chem. Soc. Rev. 2017, 46, 2705–2731.

49

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

50

Bayne, L.; Ulijn, R. V.; Halling, P. J. Effect of pore size on the performance of immobilised enzymes. Chem. Soc. Rev. 2013, 42, 9000–9010.

51

Du, Y. J.; Gao, J.; Zhou, L. Y.; Ma, L.; He, Y.; Huang, Z. H.; Jiang, Y. J. Enzyme nanocapsules armored by metal-organic frameworks: A novel approach for preparing nanobiocatalyst. Chem. Eng. J. 2017, 327, 1192–1197.

52

Hou, C.; Wang, Y.; Ding, Q. H.; Jiang, L.; Li, M.; Zhu, W. W.; Pan, D.; Zhu, H.; Liu, M. Z. Facile synthesis of enzymeembedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: Mimetic peroxidase properties and colorimetric sensor. Nanoscale 2015, 7, 18770–18779.

53

Shi, J. F.; Tian, Y.; Liu, H.; Yang, D.; Zhang, S. H.; Wu, Y. Z.; Jiang, Z. Y. Shielding of enzyme by a stable and protective organosilica layer on monolithic scaffolds for continuous bioconversion. Ind. Eng. Chem. Res. 2017, 56, 10615–10622.

54

Shieh, F. -K.; Wang, S. -C.; Yen, C. -I.; Wu, C. -C.; Dutta, S.; Chou, L. -Y.; Morabito, J. V.; Hu, P.; Hsu, M. -H.; Wu, K. C. W. et al. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: Size-selective sheltering of catalase in metal-organic framework microcrystals. J. Am. Chem. Soc. 2015, 137, 4276–4279.

File
12274_2018_2027_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2018
Revised: 10 February 2018
Accepted: 13 February 2018
Published: 09 March 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21576068, 21276060, and 21276062), the Natural Science Foundation of Tianjin City (No. 16JCYBJC19800), the Natural Science Foundation of Hebei Province (Nos. B2015202082, B2016202027, and B2017202056), the Program for Top 100 Innovative Talents in Colleges and Universities of Hebei Province (No. SLRC2017029), Hebei High Level Personnel of Support Program (No. A2016002027), and the Graduate Innovation Support Program in Hebei Province (No. CXZZSS2017024).

Return