Journal Home > Volume 11 , Issue 8

Carbon nanotube thin film transistors (CNT-TFTs) are a potential TFT technology for future high-performance macroelectronics. Practical application of CNT-TFTs requires the production of large-area, highly uniform, density-controllable, repeatable, and high-throughput CNT thin films. In this study, CNT films were fabricated on 4-inch Si wafers and 2.5th generation (G2.5) backplane glasses (370 mm × 470 mm) by dip coating using a chloroform-dispersed high-purity semiconducting CNT solution. The CNT density was controlled by the solution concentration and coating times, but was almost independent of the substrate lifting speed (1–450 mm·min-1), which enables high-throughput CNT thin film production. We developed an image processing software to efficiently characterize the density and uniformity of the large-area CNT films. Using the software, we confirmed that the CNT films are highly uniform with coefficients of variance (CV) < 10% on 4-inch Si wafers and ~ 13.8% on G2.5 backplane glasses. High-performance CNT-TFTs with a mobility of 45–55 cm2·V-1·s-1 were obtained using the fabricated CNT films with a high-performance uniformity (CV ≈ 11%–13%) on a 4-inch wafer. To our knowledge, this is the first fabrication and detailed characterization of such large-area, high-purity, semiconducting CNT films for TFT applications, which is a significant step toward manufacturing CNT-TFTs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Large-area and highly uniform carbon nanotube film for high-performance thin film transistors

Show Author's information Guodong Dong1,§Jie Zhao1,§Lijun Shen2,3( )Jiye Xia1Hu Meng4Wenhuan Yu2,3Qi Huang1Hua Han2,3Xuelei Liang1( )Lianmao Peng1
Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijing100871China
Institute of AutomationChinese Academy of SciencesBeijing100190China
University of Chinese Academy of SciencesBeijing100049China
BOE Technology Group Co.Ltd.Beijing100176China

§ Guodong Dong and Jie Zhao contributed equally to this work.

Abstract

Carbon nanotube thin film transistors (CNT-TFTs) are a potential TFT technology for future high-performance macroelectronics. Practical application of CNT-TFTs requires the production of large-area, highly uniform, density-controllable, repeatable, and high-throughput CNT thin films. In this study, CNT films were fabricated on 4-inch Si wafers and 2.5th generation (G2.5) backplane glasses (370 mm × 470 mm) by dip coating using a chloroform-dispersed high-purity semiconducting CNT solution. The CNT density was controlled by the solution concentration and coating times, but was almost independent of the substrate lifting speed (1–450 mm·min-1), which enables high-throughput CNT thin film production. We developed an image processing software to efficiently characterize the density and uniformity of the large-area CNT films. Using the software, we confirmed that the CNT films are highly uniform with coefficients of variance (CV) < 10% on 4-inch Si wafers and ~ 13.8% on G2.5 backplane glasses. High-performance CNT-TFTs with a mobility of 45–55 cm2·V-1·s-1 were obtained using the fabricated CNT films with a high-performance uniformity (CV ≈ 11%–13%) on a 4-inch wafer. To our knowledge, this is the first fabrication and detailed characterization of such large-area, high-purity, semiconducting CNT films for TFT applications, which is a significant step toward manufacturing CNT-TFTs.

Keywords: thin film, carbon nanotube, transistor, large area, uniform

References(44)

1

Franklin, A. D. Nanomaterials in transistors: From high-perfor-mance to thin-film applications. Science 2015, 349, aab2750.

2

Kuo, Y. Thin film transistor technology—Past, present, and future. Electrochem. Soc. Interface 2013, 22, 55–61.

3

Liang, X. L.; Xia, J. Y.; Dong, G. D.; Tian, B. Y.; Peng, L. M. Carbon nanotube thin film transistors for flat panel display application. Top. Curr. Chem. 2016, 374, 80.

4

Xia, J. Y.; Dong, G. D.; Tian, B. Y.; Yan, Q. P.; Zhang, H.; Liang, X. L.; Peng, L. M. Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors. Nanoscale 2016, 8, 9988–9996.

5

Brady, G. J.; Joo, Y.; Wu, M. Y.; Shea, M. J.; Gopalan, P.; Arnold, M. S. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 2014, 8, 11614–11621.

6

Derenskyi, V.; Gomulya, W.; Rios, J. M. S.; Fritsch, M.; Fröhlich, N.; Jung, S.; Allard, S.; Bisri, S. Z.; Gordiichuk, P.; Herrmann, A. et al. Carbon nanotube network ambipolar field-effect transistors with 108 on/off ratio. Adv. Mater. 2014, 26, 5969–5975.

7

Liang, Y. R.; Xia, J. Y.; Liang, X. L. Short channel carbon nanotube thin film transistors with high on/off ratio fabricated by two-step fringing field dielectrophoresis. Sci. Bull. 2016, 61, 794–800.

8

Chen, P. C.; Fu, Y.; Aminirad, R.; Wang, C.; Zhang, J. L.; Wang, K.; Galatsis, K.; Zhou, C. W. Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett. 2011, 11, 5301–5308.

9

Takahashi, T.; Yu, Z. B.; Chen, K.; Kiriya, D.; Wang, C.; Takei, K.; Shiraki, H.; Chen, T.; Ma, B. W.; Javey, A. Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett. 2013, 13, 5425–5430.

10

Lee, W.; Koo, H.; Sun, J. F.; Noh, J.; Kwon, K. -S.; Yeom, C.; Choi, Y.; Chen, K.; Javey, A.; Cho, G. A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors. Sci. Rep. 2015, 5, 17707.

11

Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

12

Zou, J. P.; Zhang, K.; Li, J. Q.; Zhao, Y. B.; Wang, Y. L.; Pillai, S. K. R.; Volkan Demir, H.; Sun, X. W.; Chan-Park, M. B.; Zhang, Q. Carbon nanotube driver circuit for 6 × 6 organic light emitting diode display. Sci. Rep. 2015, 5, 11755.

13

Zhang, J. L.; Fu, Y.; Wang, C.; Chen, P. C.; Liu, Z. W.; Wei, W.; Wu, C.; Thompson, M. E.; Zhou, C. W. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 2011, 11, 4852–4858.

14

Cong, S.; Cao, Y.; Fang, X.; Wang, Y. F.; Liu, Q. Z.; Gui, H.; Shen, C. F.; Cao, X.; Kim, E. S.; Zhou, C. W. Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays. ACS Nano 2016, 10, 10068–10074.

15

Xu, W. Y.; Zhao, J. W.; Qian, L.; Han, X. Y.; Wu, L. Z.; Wu, W. C.; Song, M. S.; Zhou, L.; Su, W. M.; Wang, C. et al. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED). Nanoscale 2014, 6, 1589–1595.

16

Li, Z.; Ding, J. F.; Lefebvre, J.; Malenfant, P. R. L. Surface effects on network formation of conjugated polymer wrapped semiconducting single walled carbon nanotubes and thin film transistor performance. Organic Electronics 2015, 26, 15–19.

17

Wang, C.; Zhang, J. L.; Ryu, K. M.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

18

Tian, B. Y.; Liang, X. L.; Yan, Q. P.; Zhang, H.; Xia, J. Y.; Dong, G. D.; Peng, L. M.; Xie, S. S. Wafer scale fabrication of carbon nanotube thin film transistors with high yield. J. Appl. Phys. 2016, 120, 034501.

19

Liyanage, L. S.; Lee, H.; Patil, N.; Park, S.; Mitra, S.; Bao, Z.; Wong, H. S. Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks. ACS Nano 2012, 6, 451–458.

20

Steger, C. An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 113–125.

21

Lindeberg, T. Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vision 1998, 30, 117–156.

22

Lam, L.; Lee, S. W.; Suen, C. Y. Thinning methodologies—A comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 869–885.

23

Peng, L. M.; Wang, S.; Liang, X. L.; Zhang, Z. Y.; Yao, K.; Hu, Y. F.; Gao, M.; Chen, Q. Scanning electron micrscopy imaging of single-walled carbon nanotubes and devices. J. Chin. Electr. Microsc. Soc. 2007, 26, 395–399. (in Chinese)

24

Tang, X. N.; Yan, X. Dip-coating for fibrous materials: Mechanism, methods and applications. J. Sol-Gel Sci. Technol. 2017, 81, 378–404.

25

Brinker, C. J. Dip coating. In Chemical Solution Deposition of Functional Oxide Thin Films. Schneller, T.; Waser, R.; Kosec, M.; Payne, D., Eds.; Springer: Vienna, 2013; pp 233–261.

26

Ng, M. H. A.; Hartadi, L. T.; Tan, H. W.; Poa, C. H. P. Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates. Nanotechnology 2008, 19, 205703.

27

Song, Y. I.; Kim, G. Y.; Choi, H. K.; Jeong, H. J.; Kim, K. K.; Yang, C. M.; Lim, S. C.; An, K. H.; Jung, K. T.; Lee, Y. H. Fabrication of carbon nanotube field emitters using a dip-coating method. Chem. Vap. Deposition 2006, 12, 375–379.

28

Jang, E. Y.; Kang, T. J.; Im, H. W.; Kim, D. W.; Kim, Y. H. Single-walled carbon-nanotube networks on large-area glass substrate by the dip-coating method. Small 2008, 4, 2255–2261.

29

Alam, M. A.; Pimparkar, N.; Kumar, S.; Murthy, J. Theory of nanocomposite network transistors for macroelectronics applications. MRS Bull. 2006, 31, 466–470.

30

Grosso, D. How to exploit the full potential of the dip-coating process to better control film formation. J. Mater. Chem. 2011, 21, 17033–17038.

31

Faustini, M.; Louis, B.; Albouy, P. A.; Kuemmel, M.; Grosso, D. Preparation of sol–gel films by dip-coating in extreme conditions. J. Phys. Chem. C 2010, 114, 7637–7645.

32

Mirri, F.; Ma, A. W. K.; Hsu, T. T.; Behabtu, N.; Eichmann, S. L.; Young, C. C.; Tsentalovich, D. E.; Pasquali, M. High-perfor-mance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 2012, 6, 9737–9744.

33

Huang, J. X.; Fan, R.; Connor, S.; Yang, P. D. One-step patterning of aligned nanowire arrays by programmed dip coating. Angew. Chem., Int. Ed. 2007, 46, 2414–2417.

34

Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2014, 30, 3460–3466.

35

Kim, J.; Hong, D.; Lee, H.; Shin, Y.; Park, S.; Khang, Y.; Lee, M.; Hong, S. Large scale assembly of pristine semiconducting carbon nanotube network-based devices exhibiting intrinsic characteristics. J. Phys. Chem. C 2013, 117, 19721–19728.

36

Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.

37

Chen, B. Y.; Zhang, P. P.; Ding, L.; Han, J.; Qiu, S.; Li, Q. W.; Zhang, Z. Y.; Peng, L. -M. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 2016, 16, 5120–5128.

38

Yang, Y. J.; Ding, L.; Han, J.; Zhang, Z. Y.; Peng, L. M. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 2017, 11, 4124–4132.

39

Chai, Y.; Hazeghi, A.; Takei, K.; Chen, H. Y.; Chan, P. C. H.; Javey, A.; Wong, H. S. P. Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans. Electron Dev. 2012, 59, 12–19.

40

Kumar, S.; Murthy, J. Y.; Alam, M. A. Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 2005, 95, 066802.

41

Xia, J. Y.; Dong, G. D.; Tian, B. Y.; Yan, Q. P.; Han, J.; Qiu, S.; Li, Q. W.; Liang, X. L.; Peng, L. M. Contact resistance effects in carbon nanotube thin film transistors. Acta Phys. -Chim. Sin. 2016, 32, 1029–1035.

42

Wang, C.; Chien, J. C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527–1533.

43

Cheng, X.; Lee, S. S.; Chaji, R.; Nathan, A. Device-circuit interactions and impact on TFT circuit-system design. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 71–80.

44
Focus-Beam Technology Homepage. http://focus-beam.com(accessed Nov 8, 2017).
Video
12274_2018_2025_MOESM1_ESM.mp4
12274_2018_2025_MOESM2_ESM.mp4
File
12274_2018_2025_MOESM3_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2017
Revised: 09 February 2018
Accepted: 13 February 2018
Published: 04 April 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program (No. 2016YFA0201902), the National Natural Science Foundation of China (No. 61621061), Beijing Municipal Science & Technology Commission (Nos. Z171100002017001 and Z161100000216146), and Chinese Academy of Science (No. YZ201671). The authors thank Dr. Wei He from Focus e-Beam Technology Co., Ltd. for helpful discussion on high throughput SEM technology. We also thank Prof. Shimin Hou and Dr. Hao Wang for valuable discussion.

Return