Journal Home > Volume 11 , Issue 6

Solar-to-H2 conversion is attracting much research attention as a potential approach to meet global renewable energy demands. Although significant advances have been made using metal-tipped colloidal cadmium chalcogenide zero-dimensional (0D) quantum dots and one-dimensional (1D) nanorod heterostructures in solar-to-H2 conversion, their efficiency may be further enhanced using an emerging class of colloidal cadmium chalcogenide nanocrystals, namely two-dimensional (2D) nanoplatelets (NPLs), because of their unique properties. In this review, we summarize the recent advances on exciton dissociation dynamics and light-driven H2 generation performance of colloidal nanoplatelet heterostructures. Following an introduction on the electronic structure of 2D NPLs, we discuss the dynamics of exciton dissociation by electron transfer to molecular acceptors. The exciton quenching dynamics of CdS NPL-Pt and CdSe NPL-Pt heterostructures are compared to highlight the effect of material properties on the relative contributions of the energy-transfer and electron-transfer pathways. Representative solar-to-H2 conversion performances of 2D NPL-metal heterostructures are discussed and compared with those of 1D nanorod-metal heterostructures. Finally, we discuss the challenges in further improving the solar-to-fuel conversion efficiencies of these systems.


menu
Abstract
Full text
Outline
About this article

Exciton dissociation dynamics and light-driven H2 generation in colloidal 2D cadmium chalcogenide nanoplatelet heterostructures

Show Author's information Qiuyang LiTianquan Lian( )
Department of ChemistryEmory University1515 Dickey Drive NE, Atlanta, GA30322USA

Abstract

Solar-to-H2 conversion is attracting much research attention as a potential approach to meet global renewable energy demands. Although significant advances have been made using metal-tipped colloidal cadmium chalcogenide zero-dimensional (0D) quantum dots and one-dimensional (1D) nanorod heterostructures in solar-to-H2 conversion, their efficiency may be further enhanced using an emerging class of colloidal cadmium chalcogenide nanocrystals, namely two-dimensional (2D) nanoplatelets (NPLs), because of their unique properties. In this review, we summarize the recent advances on exciton dissociation dynamics and light-driven H2 generation performance of colloidal nanoplatelet heterostructures. Following an introduction on the electronic structure of 2D NPLs, we discuss the dynamics of exciton dissociation by electron transfer to molecular acceptors. The exciton quenching dynamics of CdS NPL-Pt and CdSe NPL-Pt heterostructures are compared to highlight the effect of material properties on the relative contributions of the energy-transfer and electron-transfer pathways. Representative solar-to-H2 conversion performances of 2D NPL-metal heterostructures are discussed and compared with those of 1D nanorod-metal heterostructures. Finally, we discuss the challenges in further improving the solar-to-fuel conversion efficiencies of these systems.

Keywords: hydrogen generation, electron transfer, colloidal nanoplatelets, semiconductor-metal heterostructures, exciton dissociation

References(129)

1

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

2

Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S. et al. Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 2002, 298, 981–987.

3

Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.

4

Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M. et al. Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18–21, 2005; U.S. Department of Energy, Office of Basic Energy Science: Washington, DC, 2015.

5

Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 1989, 22, 163–170.

6

Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.

7

Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.

8

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

9

Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

10

Talapin, D. V.; Lee, J. -S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

11

Zhu, H. M.; Lian, T. Q. Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion. Energy Environ. Sci. 2012, 5, 9406–9418.

12

Wu, K. F.; Zhu, H. M.; Lian, T. Q. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Acc. Chem. Res. 2015, 48, 851–859.

13

Wu, K. F.; Lian, T. Q. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem. Soc. Rev. 2016, 45, 3781–3810.

14

Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 2013, 25, 3820–3839.

15

Li, Q.; Meng, H.; Zhou, P.; Zheng, Y. Q.; Wang, J.; Yu, J. G.; Gong, J. R. Zn1–xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 2013, 3, 882–889.

16

Zhang, J.; Yu, J. G.; Jaroniec, M.; Gong, J. R. Noble metal-free reduced graphene oxide-ZnxCd1–xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 2012, 12, 4584–4589.

17

Zhang, J.; Yu, J. G.; Zhang, Y. M.; Li, Q.; Gong, J. R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 2011, 11, 4774–4779.

18

Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878– 10884.

19

Zhang, K.; Dai, Y. W.; Zhou, Z. H.; Ullah Jan, S.; Guo, L. J.; Gong, J. R. Polarization-induced saw-tooth-like potential distribution in zincblende-wurtzite superlattice for efficient charge separation. Nano Energy 2017, 41, 101–108.

20

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

21

Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571.

22

Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

23

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

24

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mat. 2003, 15, 2854–2860.

25

Jasieniak, J.; Smith, L.; van Embden, J.; Mulvaney, P.; Califano, M. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 2009, 113, 19468–19474.

26

Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 2000, 287, 1011–1013.

27

Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.

28

Schaller, R. D.; Sykora, M.; Pietryga, J. M.; Klimov, V. I. Seven excitons at a cost of one:   Redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 2006, 6, 424–429.

29

Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673.

30

Mcguire, J. A.; Joo, J.; Pietryga, J. M.; Schaller, R. D.; Klimov, V. I. New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 2008, 41, 1810–1819.

31

Cirloganu, C. M.; Padilha, L. A.; Lin, Q. L.; Makarov, N. S.; Velizhanin, K. A.; Luo, H. M.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Enhanced carrier multiplication in engineered quasi-type-Ⅱ quantum dots. Nat. Commun. 2014, 5, 4148.

32

Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Ann. Rev. Condens. Matter Phys. 2014, 5, 285–316.

33

Padilha, L. A.; Stewart, J. T.; Sandberg, R. L.; Bae, W. K.; Koh, W. -K.; Pietryga, J. M.; Klimov, V. I. Aspect ratio dependence of Auger recombination and carrier multiplication in PbSe nanorods. Nano Lett. 2013, 13, 1092–1099.

34

Zhu, H. M.; Yang, Y.; Lian, T. Q. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals. Acc. Chem. Res. 2013, 46, 1270–1279.

35

Zhu, H. M.; Song, N. H.; Rodríguez-Córdoba, W.; Lian, T. Q. Wave function engineering for efficient extraction of up to nineteen electrons from one CdSe/CdS quasi-type Ⅱ quantum dot. J. Am. Chem. Soc. 2012, 134, 4250–4257.

36

Zhu, H. M.; Lian, T. Q. Enhanced multiple exciton dissociation from CdSe quantum rods: The effect of nanocrystal shape. J. Am. Chem. Soc. 2012, 134, 11289–11297.

37

Jin, S. Y.; Lian, T. Q. Electron transfer dynamics of single quantum dots on the (110) surface of a rutile TiO2 single crystal. Sci. China Chem. 2011, 54, 1898–1902.

38

Song, N. H.; Zhu, H. M.; Jin, S. Y.; Lian, T. Q. Hole transfer from single quantum dots. ACS Nano 2011, 5, 8750–8759.

39

Yang, Y.; Rodríguez-Córdoba, W.; Lian, T. Q. Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions. J. Am. Chem. Soc. 2011, 133, 9246–9249.

40

Zhu, H. M.; Song, N. H.; Lian, T. Q. Wave function engineering for ultrafast charge separation and slow charge recombination in type Ⅱ core/shell quantum dots. J. Am. Chem. Soc. 2011, 133, 8762–8771.

41

Yang, Y.; Lian, T. Q. Efficient multiple exciton dissociation and hot electron extraction by ultrafast interfacial electron transfer from PbS QD. Coord. Chem. Rev. 2014, 263–264, 229–238.

42

Yang, Y.; Rodríguez-Córdoba, W.; Xiang, X.; Lian, T. Q. Strong electronic coupling and ultrafast electron transfer between PbS quantum dots and TiO2 nanocrystalline films. Nano Lett. 2012, 12, 303–309.

43

Yang, Y.; Liu, Z.; Lian, T. Q. Bulk transport and interfacial transfer dynamics of photogenerated carriers in CdSe quantum dot solid electrodes. Nano Lett. 2013, 13, 3678–3683.

44

Zhu, H. M.; Yang, Y.; Hyeon-Deuk, K.; Califano, M.; Song, N. H.; Wang, Y. W.; Zhang, W. Q.; Prezhdo, O. V.; Lian, T. Q. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett. 2014, 14, 1263–1269.

45

Zhu, H. M.; Song, N. H.; Lian, T. Q. Controlling charge separation and recombination rates in CdSe/ZnS type Ⅰ core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 2010, 132, 15038–15045.

46

Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L. -W.; Paul Alivisatos, A. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430, 190–195.

47

Li, H. B.; Kanaras, A. G.; Manna, L. Colloidal branched semiconductor nanocrystals: State of the art and perspectives. Acc. Chem. Res. 2013, 46, 1387–1396.

48

Shieh, F.; Saunders, A. E.; Korgel, B. A. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 2005, 109, 8538–8542.

49

Li, L. -S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001, 1, 349–351.

50

Wu, K. F.; Hill, L. J.; Chen, J. Q.; McBride, J. R.; Pavlopolous, N. G.; Richey, N. E.; Pyun, J.; Lian, T. Q. Universal length dependence of rod-to-seed exciton localization efficiency in type Ⅰ and quasi-type Ⅱ CdSe@CdS nanorods. ACS Nano 2015, 9, 4591–4599.

51

Habas, S. E.; Yang, P. D.; Mokari, T. Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc. 2008, 130, 3294–3295.

52

Wu, K. F.; Zhu, H. M.; Liu, Z.; Rodríguez-Córdoba, W.; Lian, T. Q. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 10337–10340.

53

Acharya, K. P.; Khnayzer, R. S.; O'Connor, T.; Diederich, G.; Kirsanova, M.; Klinkova, A.; Roth, D.; Kinder, E.; Imboden, M.; Zamkov, M. The role of hole localization in sacrificial hydrogen production by semiconductor–metal heterostructured nanocrystals. Nano Lett. 2011, 11, 2919–2926.

54

Amirav, L.; Alivisatos, A. P. Photocatalytic hydrogen production with tunable nanorod heterostructures. J. Phys. Chem. Lett. 2010, 1, 1051–1054.

55

Bang, J. U.; Lee, S. J.; Jang, J. S.; Choi, W.; Song, H. Geometric effect of single or double metal-tipped CdSe nanorods on photocatalytic H2 generation. J. Phys. Chem. Lett. 2012, 3, 3781–3785.

56

Berr, M.; Vaneski, A.; Susha, A. S.; Rodríguez-Fernández, J.; Doblinger, M.; Jackel, F.; Rögach, A. L.; Feldmann, J. Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation. Appl. Phys. Lett. 2010, 97, 093108.

57

Berr, M. J.; Wagner, P.; Fischbach, S.; Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl. Phys. Lett. 2012, 100, 223903.

58

Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

59

Wu, K. F.; Chen, Z. Y.; Lv, H. J.; Zhu, H. M.; Hill, C. L.; Lian, T. Q. Hole removal rate limits photodriven H2 generation efficiency in CdS-Pt and CdSe/CdS-Pt semiconductor nanorod–metal tip heterostructures. J. Am. Chem. Soc. 2014, 136, 7708–7716.

60

Zhu, H. M.; Song, N. H.; Lv, H. J.; Hill, C. L.; Lian, T. Q. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 11701–11708.

61

Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 2006, 128, 5632–5633.

62

Ithurria, S.; Dubertret, B. Quasi 2D colloidal cdse platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

63

Ouyang, J. Y.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 2008, 112, 13805–13811.

64

Son, J. S.; Wen, X. -D.; Joo, J.; Chae, J.; Baek, S. -I.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem., Int. Ed. 2009, 48, 6861–6864.

65

Ithurria, S.; Bousquet, G.; Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 2011, 133, 3070–3077.

66

Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

67

Li, Z.; Peng, X. G. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects. J. Am. Chem. Soc. 2011, 133, 6578–6586.

68

She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Demortière, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 2014, 14, 2772–2777.

69

Achtstein, A. W.; Antanovich, A.; Prudnikau, A.; Scott, R.; Woggon, U.; Artemyev, M. Linear absorption in CdSe nanoplates: Thickness and lateral size dependency of the intrinsic absorption. J. Phys. Chem. C 2015, 119, 20156– 20161.

70

Yeltik, A.; Delikanli, S.; Olutas, M.; Kelestemur, Y.; Guzelturk, B.; Demir, H. V. Experimental determination of the absorption cross-section and molar extinction coefficient of colloidal CdSe nanoplatelets. J. Phys. Chem. C 2015, 119, 26768–26775.

71

Naeem, A.; Masia, F.; Christodoulou, S.; Moreels, I.; Borri, P.; Langbein, W. Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets. Phys. Rev. B 2015, 91, 121302.

72

Ma, X. D.; Diroll, B. T.; Cho, W.; Fedin, I.; Schaller, R. D.; Talapin, D. V.; Gray, S. K.; Wiederrecht, G. P.; Gosztola, D. J. Size-dependent biexciton quantum yields and carrier dynamics of quasi-two-dimensional core/shell nanoplatelets. ACS Nano 2017, 11, 9119–9127.

73

Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V. Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv. Mater. 2017, 29, 1700821.

74

Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y. X.; Kuno, M. Efficient photocatalytic hydrogen generation from Ni nanoparticle decorated CdS nanosheets. ACS Catal. 2015, 5, 6615–6623.

75

Wu, K. F.; Li, Q. Y.; Du, Y. L.; Chen, Z. Y.; Lian, T. G. Ultrafast exciton quenching by energy and electron transfer in colloidal CdSe nanosheet-Pt heterostructures. Chem. Sci. 2015, 6, 1049–1054.

76

Li, Q. Y.; Zhou, B. Y.; McBride, J. R.; Lian, T. Q. Efficient diffusive transport of hot and cold excitons in colloidal type Ⅱ CdSe/CdTe core/crown nanoplatelet heterostructures. ACS Energy Letters 2017, 2, 174–181.

77

Li, Q. Y.; Wu, K. F.; Chen, J. Q.; Chen, Z. Y.; McBride, J. R.; Lian, T. Q. Size-independent exciton localization efficiency in colloidal CdSe/CdS core/crown nanosheet type-I heterostructures. ACS Nano 2016, 10, 3843–3851.

78

Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 2014, 14, 207–213.

79

Antanovich, A. V.; Prudnikau, A. V.; Melnikau, D.; Rakovich, Y. P.; Chuvilin, A.; Woggon, U.; Achtstein, A. W.; Artemyev, M. V. Colloidal synthesis and optical properties of type-Ⅱ CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets. Nanoscale 2015, 7, 8084–8092.

80

Pedetti, S.; Ithurria, S.; Heuclin, H.; Patriarche, G.; Dubertret, B. Type-Ⅱ CdSe/CdTe core/crown semiconductor nanoplatelets. J. Am. Chem. Soc. 2014, 136, 16430–16438.

81

Wu, K. F.; Li, Q. Y.; Jia, Y. Y.; McBride, J. R.; Xie, Z. -X.; Lian, T. Q. Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-Ⅱ heteronanosheets. ACS Nano 2015, 9, 961–968.

82

Li, Q. Y.; Xu, Z. H.; McBride, J. R.; Lian, T. Q. Low threshold multiexciton optical gain in colloidal CdSe/CdTe core/crown type-Ⅱ nanoplatelet heterostructures. ACS Nano 2017, 11, 2545–2553.

83

Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.

84

Pedetti, S.; Nadal, B.; Lhuillier, E.; Mahler, B.; Bouet, C.; Abecassis, B.; Xu, X. Z.; Dubertret, B. Optimized synthesis of CdTe nanoplatelets and photoresponse of CdTe nanoplatelets films. Chem. Mat. 2013, 25, 2455–2462.

85

Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knüsel, P. N.; Kress, S. J. P.; Prins, F.; Erwin, S. C.; Norris, D. J. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017, 16, 743–748.

86

Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982.

87

Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 2012, 134, 18591–18598.

88

Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. Spectroscopy of single CdSe nanoplatelets. ACS Nano 2012, 6, 6751–6758.

89

Pidgeon, C. R.; Brown, R. N. Interband magneto-absorption and faraday rotation in InSb. Phys. Rev. 1966, 146, 575–583.

90

Shinada, M.; Sugano, S. Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption. J. Phys. Soc. Jpn. 1966, 21, 1936–1946.

91

Schmitt-Rink, S.; Chemla, D. S.; Miller, D. A. B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 1985, 32, 6601–6609.

92

Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. Jetp Lett. 1979, 29, 658–661.

93

Achtstein, A. W.; Schliwa, A.; Prudnikau, A.; Hardzei, M.; Artemyev, M. V.; Thomsen, C.; Woggon, U. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 2012, 12, 3151–3157.

94

Benchamekh, R.; Gippius, N. A.; Even, J.; Nestoklon, M. O.; Jancu, J. M.; Ithurria, S.; Dubertret, B.; Efros, A. L.; Voisin, P. Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe. Phys. Rev. B 2014, 89, 035307.

95

Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.

96

Brus, L. Size, dimensionality, and strong electron correlation in nanoscience. Acc. Chem. Res. 2014, 47, 2951–2959.

97

Shabaev, A.; Efros, A. L. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett. 2004, 4, 1821–1825.

98

Chernikov, A.; Ruppert, C.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics 2015, 9, 466–470.

99

Hill, H. M.; Rigosi, A. F.; Roquelet, C.; Chernikov, A.; Berkelbach, T. C.; Reichman, D. R.; Hybertsen, M. S.; Brus, L. E.; Heinz, T. F. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 2015, 15, 2992–2997.

100

Li, J.; Luo, L. H.; Huang, H. W.; Ma, C.; Ye, Z. Z.; Zeng, J.; He, H. P. 2D behaviors of excitons in cesium lead halide perovskite nanoplatelets. J. Phys. Chem. Lett. 2017, 8, 1161–1168.

101

Wu, K. F.; Song, N. H.; Liu, Z.; Zhu, H. M.; Rodríguez-Córdoba, W.; Lian, T. Q. Interfacial charge separation and recombination in InP and quasi-type Ⅱ InP/CdS core/shell quantum dot-molecular acceptor complexes. J. Phys. Chem. A 2013, 117, 7561–7570.

102

Wu, K. F.; Du, Y. L.; Tang, H.; Chen, Z. Y.; Lian, T. Q. Efficient extraction of trapped holes from colloidal CdS nanorods. J. Am. Chem. Soc. 2015, 137, 10224–10230.

103

Li, Q. Y.; Lian, T. Q. Area- and thickness-dependent biexciton Auger recombination in colloidal CdSe nanoplatelets: Breaking the "universal volume scaling law". Nano Lett. 2017, 17, 3152–3158.

104

Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 2000, 104, 6112–6123.

105

Klimov, V.; Bolivar, P. H.; Kurz, H. Ultrafast carrier dynamics in semiconductor quantum dots. Phys. Rev. B 1996, 53, 1463–1467.

106

Hunsche, S.; Dekorsy, T.; Klimov, V.; Kurz, H. Ultrafast dynamics of carrier-induced absorption changes in highly-excited CdSe nanocrystals. Appl. Phys. B 1996, 62, 3–10.

107

Klimov, V. I.; Schwarz, C. J.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Ultrafast dynamics of inter- and intraband transitions in semiconductor nanocrystals: Implications for quantum-dot lasers. Phys. Rev. B 1999, 60, R2177–R2180.

108

Diroll, B. T.; Fedin, I.; Darancet, P.; Talapin, D. V.; Schaller, R. D. Surface-area-dependent electron transfer between isoenergetic 2D quantum wells and a molecular acceptor. J. Am. Chem. Soc. 2016, 138, 11109–11112.

109

Cassette, E.; Pensack, R. D.; Mahler, B.; Scholes, G. D. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nat. Commun. 2015, 6, 6086.

110

Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular Auger recombination of electron-hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

111

Kumagai, M.; Takagahara, T. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Phys. Rev. B 1989, 40, 12359–12381.

112

Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 2013, 88, 045318.

113

Jena, D.; Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 2007, 98, 136805.

114

Okuhata, T.; Tamai, N. Face-dependent electron transfer in CdSe nanoplatelet–methyl viologen complexes. J. Phys. Chem. C 2016, 120, 17052–17059.

115

Kunneman, L. T.; Schins, J. M.; Pedetti, S.; Heuclin, H.; Grozema, F. C.; Houtepen, A. J.; Dubertret, B.; Siebbeles, L. D. A. Nature and decay pathways of photoexcited states in CdSe and CdSe/CdS nanoplatelets. Nano Lett. 2014, 14, 7039–7045.

116

Dong, S.; Pal, S.; Lian, J.; Chan, Y.; Prezhdo, O. V.; Loh, Z. -H. Sub-picosecond Auger-mediated hole-trapping dynamics in colloidal CdSe/CdS core/shell nanoplatelets. ACS Nano 2016, 10, 9370–9378.

117

Pan, A. L.; Liu, D.; Liu, R. B.; Wang, F. F.; Zhu, X.; Zou, B. S. Optical waveguide through CdS nanoribbons. Small 2005, 1, 980–983.

118

Chai, Z. G.; Zeng, T. -T.; Li, Q.; Lu, L. -Q.; Xiao, W. -J.; Xu, D. S. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. J. Am. Chem. Soc. 2016, 138, 10128–10131.

119

Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrović, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.

120

Kalisman, P.; Nakibli, Y.; Amirav, L. Perfect photon-to-hydrogen conversion efficiency. Nano Lett. 2016, 16, 1776–1781.

121

Berr, M. J.; Schweinberger, F. F.; Döblinger, M.; Sanwald, K. E.; Wolff, C.; Breimeier, J.; Crampton, A. S.; Ridge, C. J.; Tschurl, M.; Heiz, U. et al. Size-selected subnanometer cluster catalysts on semiconductor nanocrystal films for atomic scale insight into photocatalysis. Nano Lett. 2012, 12, 5903–5906.

122

Khon, E.; Lambright, K.; Khnayzer, R. S.; Moroz, P.; Perera, D.; Butaeva, E.; Lambright, S.; Castellano, F. N.; Zamkov, M. Improving the catalytic activity of semiconductor nanocrystals through selective domain etching. Nano Lett. 2013, 13, 2016–2023.

123

Tongying, P.; Plashnitsa, V. V.; Petchsang, N.; Vietmeyer, F.; Ferraudi, G. J.; Krylova, G.; Kuno, M. Photocatalytic hydrogen generation efficiencies in one-dimensional CdSe heterostructures. J. Phys. Chem. Lett. 2012, 3, 3234–3240.

124

Elmalem, E.; Saunders, A. E.; Costi, R.; Salant, A.; Banin, U. Growth of photocatalytic CdSe–Pt nanorods and nanonets. Adv. Mater. 2008, 20, 4312–4317.

125

Naskar, S.; Lübkemann, F.; Hamid, S.; Freytag, A.; Wolf, A.; Koch, J.; Ivanova, I.; Pfnür, H.; Dorfs, D.; Bahnemann, D. W. et al. Synthesis of ternary and quaternary Au and Pt decorated CdSe/CdS heteronanoplatelets with controllable morphology. Adv. Funct. Mater. 2017, 27, 1604685.

126

Nakibli, Y.; Kalisman, P.; Amirav, L. Less is more: The case of metal cocatalysts. J. Phys. Chem. Lett. 2015, 6, 2265–2268.

127

Matsumoto, H.; Sakata, T.; Mori, H.; Yoneyama, H. Preparation of monodisperse CdS nanocrystals by size selective photocorrosion. J. Phys. Chem. 1996, 100, 13781–13785.

128

Zhang, L. X.; Liu, Q. L.; Aoki, T.; Crozier, P. A. Structural evolution during photocorrosion of Ni/NiO core/shell cocatalyst on TiO2. J. Phys. Chem. C 2015, 119, 7207–7214.

129

Zhu, X. Y.; Monahan, N. R.; Gong, Z. Z.; Zhu, H. M.; Williams, K.; Nelson, C. A. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320.

Publication history
Copyright
Acknowledgements

Publication history

Received: 04 January 2018
Revised: 03 February 2018
Accepted: 12 February 2018
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Solar Photochemistry Program under Award Number (No. DE-FG02-12ER16347).

Return