AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries

Meng Wang1,§Qinghua Liang2,§Junwei Han1Ying Tao1( )Donghai Liu1Chen Zhang3Wei Lv2Quan-Hong Yang1( )
Nanoyang GroupSchool of Chemical Engineering and TechnologyCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300072China
Engineering Laboratory for Functionalized Carbon MaterialsShenzhen Key Laboratory for Graphene-based MaterialsGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
School of Marine Science and TechnologyTianjin UniversityTianjin300072China

§ Meng Wang and Qinghua Liang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The practical application of lithium-sulfur batteries with a high energy density has been plagued by the poor cycling stability of the sulfur cathode, which is a result of the insulating nature of sulfur and the dissolution of polysulfides. Much work has been done to construct nanostructured or doped carbon as a porous or polar host for promising sulfur cathodes, although restricting the polysulfide shuttle effect by improving the redox reaction kinetics is more attractive. Herein, we present a well-designed strategy by introducing graphitic carbon nitride (g-C3N4) into a three-dimensional hierarchical porous graphene assembly to achieve a synergistic combination of confinement and catalyzation of polysulfides. The porous g-C3N4 nanosheets in situ formed inside the graphene network afford a highly accessible surface to catalyze the transformation of polysulfides, and the hierarchical porous graphene-assembled carbon can function as a conductive network and provide appropriate space for g-C3N4 catalysis in the sulfur cathode. Thus, this hybrid can effectively improve sulfur utilization and block the dissolution of polysulfides, achieving excellent cycling performance for sulfur cathodes in lithium-sulfur batteries.

Electronic Supplementary Material

Download File(s)
12274_2018_2023_MOESM1_ESM.pdf (2.2 MB)

References

1

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.

2

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

3

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018-3032.

4

Tan, G. Q.; Xu, R.; Xing, Z. Y.; Yuan, Y. F.; Lu, J.; Wen, J. G.; Liu, C.; Ma, L.; Zhan, C.; Liu, Q. et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nat. Energy 2017, 2, 17090.

5

Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Cheng, X. B.; Xu, W. T.; Zhao, C. Z.; Wei, F.; Zhang, Q. Healing high-loading sulfur electrodes with unprecedented long cycling life: Spatial heterogeneity control. J. Am. Chem. Soc. 2017, 139, 8458-8466.

6

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125-1134.

7

Li, G.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.

8

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605-5634.

9

Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351-6358.

10

Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577-585.

11

Jia, X. L.; Zhang, C.; Liu, J. J.; Lv, W.; Wang, D. W.; Tao, Y.; Li, Z. J.; Zheng, X. Y.; Yu, J. S.; Yang, Q. H. Evolution of the effect of sulfur confinement in graphene-based porous carbons for use in Li-S batteries. Nanoscale 2016, 8, 4447-4451.

12

Liu, J. H.; Li, W. F.; Duan, L. M.; Li, X.; Ji, L.; Geng, Z. B.; Huang, K. K.; Lu, L. H.; Zhou, L. S.; Liu, Z. R. et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 2015, 15, 5137-5142.

13

Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.

14

Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 2016, 12, 3283-3291.

15

Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840-845.

16

Liu, D. H.; Zhang, C.; Zhou, G. M.; Lv, W.; Ling, G. W.; Zhi, L. J.; Yang, Q. -H. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.

17

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/ graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

18

Zhou, T. H.; Zhao, Y.; Zhou, G. M.; Lv, W.; Sun, P. J.; Kang, F. Y.; Li, B. H.; Yang, Q. H. An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. Nano Energy 2017, 39, 291-296.

19

Zheng, C.; Niu, S. Z.; Lv, W.; Zhou, G. M.; Li, J.; Fan, S. X.; Deng, Y. Q.; Pan, Z. Z.; Li, B. H.; Kang, F. Y. et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 2017, 33, 306-312.

20

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694-1703.

21

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.

22

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974.

23

Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150-2176.

24

Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634-4639.

25

Liang, J.; Yin, L. C.; Tang, X. N.; Yang, H. C.; Yan, W. S.; Song, L.; Cheng, H. M.; Li, F. Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 25193-25201.

26

Liao, K. M.; Mao, P.; Li, N.; Han, M.; Yi, J.; He, P.; Sun, Y.; Zhou, H. S. Stabilization of polysulfides via lithium bonds for Li-S batteries. J. Mater. Chem. A 2016, 4, 5406-5409.

27

Fan, C. Y.; Yuan, H. Y.; Li, H. H.; Wang, H. F.; Li, W. L.; Sun, H. Z.; Wu, X. L.; Zhang, J. P. The effective design of a polysulfide-trapped separator at the molecular level for high energy density Li-S batteries. ACS Appl. Mater. Interfaces 2016, 8, 16108-16115.

28

Yu, H. J.; Shang, L.; Bian, T.; Shi, R.; Waterhouse, G. I. N.; Zhao, Y. F.; Zhou, C.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 2016, 28, 5080-5086.

29

Pang, Q.; Nazar, L. F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 2016, 10, 4111-4118.

30

Liang, Q. H.; Li, Z.; Bai, Y.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Sci. China Mater. 2017, 60, 109-118.

31

Li, Z. J.; Wu, S. D.; Lv, W.; Shao, J. J.; Kang, F. Y.; Yang, Q. H. Graphene emerges as a versatile template for materials preparation. Small 2016, 12, 2674-2688.

32

Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522-18525.

33

Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 2013, 7, 5367-5375.

34

Tao, Y.; Xie, X. Y.; Lv, W.; Tang, D. M.; Kong, D. B.; Huang, Z. H.; Nishihara, H.; Ishii, T.; Li, B. H.; Golberg, D. et al. Towards ultrahigh volumetric capacitance: Graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 2013, 3, 2975.

35

Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 2015, 25, 6885-6892.

36

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

37

Han, Q.; Wang, B.; Gao, J.; Cheng, Z. H.; Zhao, Y.; Zhang, Z. P.; Qu, L. T. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016, 10, 2745-2751.

38

Ma, T. Y.; Dai, S.; Mietek, J.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281-7285.

39

Chen, K.; Chai, Z. G.; Li, C.; Shi, L. R.; Liu, M. X.; Xie, Q.; Zhang, Y. F.; Xu, D. S.; Manivannan, A.; Liu, Z. F. Catalyst-free growth of three-dimensional graphene flakes and graphene/g-C3N4 composite for hydrocarbon oxidation. ACS Nano 2016, 10, 3665-3673.

40

Han, Q.; Cheng, Z. H.; Gao, J.; Zhao, Y.; Zhang, Z. P.; Dai, L. M.; Qu, L. T. Mesh-on-mesh graphitic-C3N4@graphene for highly efficient hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1606352.

41

Liu, Q.; Zhang, J. Y. Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells. Langmuir 2013, 29, 3821-3828.

42

Hou, Y.; Wen, Z. H.; Cui, S. M.; Feng, X. L.; Chen, J. H. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett. 2016, 16, 2268-2277.

43

Hou, T. Z.; Xu, W. T.; Chen, X.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2017, 56, 8178-8182.

Nano Research
Pages 3480-3489
Cite this article:
Wang M, Liang Q, Han J, et al. Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Research, 2018, 11(6): 3480-3489. https://doi.org/10.1007/s12274-018-2023-y
Part of a topical collection:

722

Views

99

Crossref

N/A

Web of Science

98

Scopus

9

CSCD

Altmetrics

Received: 18 December 2017
Revised: 04 February 2018
Accepted: 11 February 2018
Published: 22 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return