Journal Home > Volume 11 , Issue 8

The development of multifunctional nanoparticles for diagnosis and therapy of cancer has been a focus of research in recent years. Owing to excellent properties of chemophotothermal therapy and tumor targeting accompanied by magnetic resonance (MR) or computed tomography (CT) imaging, mesoporous silica has been widely applied to tumor diagnosing carriers. However, previous research focused more on chemotherapy combined with photothermal therapeutic strategies but ignored intuitive assessment of tumors. In this work, we report a novel nanoprobe consisting of hyaluronic-acid–modified Gold Nanorods@mSiO2@Mn@DOX (GNR@MMH@DOX) nanoparticles, which realize multifunctional integration of therapeutics and imaging. Au nanorods (GNRs) were synthesized without a seed precursor by a water bath method, then sequentially modified with mesoporous silica, doped with Mn2+, and loaded with doxorubicin in a solution. In vitro and in vivo assays verified their great biocompatibility, good stability, and attractive specificity of targeting to receptor CD44, which is overexpressed on cancer cells. In addition, GNR@MMH nanoparticles proved to be a more distinguishable CT/MR imaging contrast compared to commercial contrast agents. The article demonstrates promising composition for CT/MR imaging and photothermal therapy of tumors, giving new insights into the diagnosis and therapy of different kinds of malignant tumors.


menu
Abstract
Full text
Outline
About this article

A chemophotothermal and targeting multifunctional nanoprobe with a tumor-diagnosing ability

Show Author's information Niannian Li1,§Jiejun Cheng2,§Ying Zhang1,§Jie Wang1Gang Huang3( )Jun Zhu4( )Dannong He1,4( )
School of Materials Science and EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
Shanghai University of Medicine & Health Sciences279 Zhou Zhu highwayShanghai201318China
National Engineering Research Center for Nanotechnology28 East Jiang Chuan RoadShanghai200241China

§ Niannian Li, Jiejun Cheng and Ying Zhang contributed equally to this work.

Abstract

The development of multifunctional nanoparticles for diagnosis and therapy of cancer has been a focus of research in recent years. Owing to excellent properties of chemophotothermal therapy and tumor targeting accompanied by magnetic resonance (MR) or computed tomography (CT) imaging, mesoporous silica has been widely applied to tumor diagnosing carriers. However, previous research focused more on chemotherapy combined with photothermal therapeutic strategies but ignored intuitive assessment of tumors. In this work, we report a novel nanoprobe consisting of hyaluronic-acid–modified Gold Nanorods@mSiO2@Mn@DOX (GNR@MMH@DOX) nanoparticles, which realize multifunctional integration of therapeutics and imaging. Au nanorods (GNRs) were synthesized without a seed precursor by a water bath method, then sequentially modified with mesoporous silica, doped with Mn2+, and loaded with doxorubicin in a solution. In vitro and in vivo assays verified their great biocompatibility, good stability, and attractive specificity of targeting to receptor CD44, which is overexpressed on cancer cells. In addition, GNR@MMH nanoparticles proved to be a more distinguishable CT/MR imaging contrast compared to commercial contrast agents. The article demonstrates promising composition for CT/MR imaging and photothermal therapy of tumors, giving new insights into the diagnosis and therapy of different kinds of malignant tumors.

Keywords: gold nanorods, Mn doping, magnetic resonance or computed tomography (MR/CT) imaging, chemophotothermal therapy

References(48)

1

Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359. DOI: 10.1002/adma.201204683.

2

Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.

3

Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929–1934.

4

Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228.

5

Lal, S.; Clare, S. E.; Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008, 41, 1842–1851.

6

Zhang, P. C.; Hu, C. H.; Ran, W.; Meng, J.; Yin, Q.; Li, Y. P. Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 2016, 6, 948–968.

7

Choi, W. I.; Kim, J. Y.; Kang, C.; Byeon, C. C.; Kim, Y. H.; Tae, G. Tumor regression in vivo by photothermal therapy based on goldnanorod-loaded, functional nanocarriers. ACS Nano 2011, 5, 1995–2003.

8

Dykman, L. A.; Khlebtsov, N. G. Multifunctional gold-based nanocomposites for theranostics. Biomaterials 2016, 108, 13–34.

9

Lin, Z.; Liu, Y.; Ma, X. M.; Hu, S. Y.; Zhang, J. W.; Wu, Q.; Ye, W. B.; Zhu, S. Y.; Yang, D. H.; Qu, D. B. et al. Photothermal ablation of bone metastasis of breast cancer using PEGylated multi-walled carbon nanotubes. Sci. Rep. 2015, 5, 11709. DOI: 10.1038/srep11709.

10

Zhao, H.; Chao, Y.; Liu, J. J.; Huang, J.; Pan, J.; Guo, W. L.; Wu, J. Z.; Sheng, M.; Yang, K.; Wang, J. et al. Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics 2016, 6, 1833–1843.

11

Shi, X. Z.; Gong, H.; Li, Y. J.; Wang, C.; Cheng, L.; Liu, Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 2013, 34, 4786–4793.

12

Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

13

Ai, X. Z.; Ho, C. J. H.; Aw, J. X.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X. Y.; Wang, Y.; Liu, X. G.; Chen, H. B. et al. in vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432. DOI: 10.1038/ncomms10432.

14

Jin, H. L.; Zhao, G. F.; Hu, J. L.; Ren, Q. G.; Yang, K.; Wan, C.; Huang, A.; Li, P. D.; Feng, J. P.; Chen, J. et al. Melittin-containing hybrid peptide hydrogels for enhanced photothermal therapy of glioblastoma. ACS Appl. Mater. Interfaces 2017, 9, 25755–25766.

15

Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H. J. Carbon materials for drug delivery & cancer therapy. Mater. Today 2011, 14, 316–323.

16

Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41, 1721–1730.

17

Yang, K.; Wan, J. M.; Zhang, S.; Zhang, Y. J.; Lee, S. T.; Liu, Z. in vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 2011, 5, 516–522.

18

Yu, M.; Guo, F.; Tan, F. P.; Li, N. Dual-targeting nanocarrier system based on thermosensitive liposomes and gold nanorods for cancer thermo-chemotherapy. J. Controlled Release 2015, 215, 91–100.

19

Yuan, A. H.; Huan, W.; Liu, X.; Zhang, Z. C.; Zhang, Y. F.; Wu, J. H.; Hu, Y. Q. NIR light-activated drug release for synergetic chemo-photothermal therapy. Mol. Pharmaceutics 2017, 14, 242–251.

20

Peng, P. C.; Hong, R. L.; Tsai, Y. J.; Li, P. T.; Tsai, T.; Chen, C. T. Dual-effect liposomes encapsulated with doxorubicin and chlorin e6 augment the therapeutic effect of tumor treatment. Lasers Surg. Med. 2015, 47, 77–87.

21

Joo, K. I.; Xiao, L.; Liu, S. L.; Liu, Y. R.; Lee, C. L.; Conti, P. S.; Wong, M. K.; Li, Z. B.; Wang, P. Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs. Biomaterials 2013, 34, 3098–3109.

22

Barenholz, Y. Doxil(R)-the first FDA-approved nano-drug: Lessons learned. J. Controlled Release 2012, 160, 117–134.

23

Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery 2005, 4, 145–160.

24

Pakunlu, R. I.; Wang, Y.; Tsao, W.; Pozharov, V.; Cook, T. J.; Minko, T. Enhancement of the efficacy of chemotherapy for lung cancer by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense. Cancer Res. 2004, 64, 6214–6224.

25

Chen, Y. B.; Liao, J.; Xie, R.; Chen, G. L.; Chen, G. Discrimination of metastatic from hyperplastic pelvic lymph nodes in patients with cervical cancer by diffusion-weighted magnetic resonance imaging. Abdom. Imaging 2011, 36, 102–109.

26

Fujiwara, T.; Yasufuku, K.; Nakajima, T.; Chiyo, M.; Yoshida, S.; Suzuki, M.; Shibuya, K.; Hiroshima, K.; Nakatani, Y.; Yoshino, I. The utility of sonographic features during endobronchial ultrasound-guided transbronchial needle aspiration for lymph node staging in patients with lung cancer: A standard endobronchial ultrasound image classification system. Chest 2010, 138, 641–647.

27

Bluemel, C.; Schnelzer, A.; Okur, A.; Ehlerding, A.; Paepke, S.; Scheidhauer, K.; Kiechle, M. Freehand SPECT for image-guided sentinel lymph node biopsy in breast cancer. Eur. J. Nuclear Med. Mol. Imaging 2013, 40, 1656–1661.

28

McElroy, M.; Hayashi, K.; Garmy-Susini, B.; Kaushal, S.; Varner, J. A.; Moossa, A. R.; Hoffman, R. M.; Bouvet, M. Fluorescent LYVE-1 antibody to image dynamically lymphatic trafficking of cancer cells in vivo. J. Surgical Res. 2009, 151, 68–73.

29

Abellan-Pose, R.; Teijeiro-Valiño, C.; Santander-Ortega, M. J.; Borrajo, E.; Vidal, A.; Garcia-Fuentes, M.; Csaba, N.; Alonso, M. J. Polyaminoacid nanocapsules for drug delivery to the lymphatic system: Effect of the particle size. Int. J. Pharmaceutics 2016, 509, 107–117.

30

Irjala, H.; Elima, K.; Johansson, E. L.; Merinen, M.; Kontula, K.; Alanen, K.; Grenman, R.; Salmi, M.; Jalkanen, S. The same endothelial receptor controls lymphocyte traffic both in vascular and lymphatic vessels. Eur. J. Immunol. 2003, 33, 815–824.

31

Kobayashi, H.; Kawamoto, S.; Sakai, Y.; Choyke, P. L.; Star, R. A.; Brechbiel, M. W.; Sato, N.; Tagaya, Y.; Morris, J. C.; Waldmann, T. A. Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J. Natl. Cancer Inst. 2004, 96, 703–708.

32

Li, J. C.; Hu, Y.; Yang, J.; Wei, P.; Sun, W. J.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 2015, 38, 10–21.

33

Zhang, W.; Guo, Z. Y.; Huang, D. Q.; Liu, Z. M.; Guo, X.; Zhong, H. Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32, 8555–8561.

34

Liu, Y. X.; Li, L. Y.; Guo, Q. W.; Wang, L.; Liu, D. D.; Wei, Z. W.; Zhou, J. Novel Cs-based upconversion nanoparticles as dual-modal CT and UCL imaging agents for chemo-photothermal synergistic therapy. Theranostics 2016, 6, 1491–1505.

35

Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236.

36

Maldonado, C. R.; Salassa, L.; Gomez-Blanco, N.; Mareque-Rivas, J. C. Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coordin. Chem. Rev. 2013, 257, 2668–2688.

37

Wang, Y.; Huang, R. Q.; Liang, G. H.; Zhang, Z. Y.; Zhang, P.; Yu, S. N.; Kong, J. L. MRI-visualized, dual-targeting, combined tumor therapy using magnetic graphene-based mesoporous silica. Small 2014, 10, 109–116.

38

Kim, J.; Lee, J. E.; Lee, S. H.; Yu, J. H.; Lee, J. H.; Park, T. G.; Hyeon, T. Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-argeted imaging and magnetically guided drug delivery. Adv. Mater. 2008, 20, 478–483.

39

Xu, J. S.; Huang, J. W.; Qin, R. G.; Hinkle, G. H.; Povoski, S. P.; Martin, E. W.; Xu, R. X. Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials 2010, 31, 1716–1722.

40

Lee, J. H.; Lee, K.; Moon, S. H.; Lee, Y.; Park, T. G.; Cheon, J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem., Int. Ed. 2009, 48, 4174–4179.

41

Schneider, G. F.; Subr, V.; Ulbrich, K.; Decher, G. Multifunctional cytotoxic stealth nanoparticles. A model approach with potential for cancer therapy. Nano Lett. 2009, 9, 636–642.

42

Wu, H. X.; Zhang, S. J.; Zhang, J. M.; Liu, G.; Shi, J. L.; Zhang, L. X.; Cui, X, Z.; Ruan, M. L.; He, Q. J.; Bu, W. B. A hollow-core, magnetic, and mesoporous double-shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Adv. Funct. Mater. 2011, 21, 1850–1862. DOI: 10.1002/adfm.201002337.

43

Li, C. X.; Yang, D. M.; Ma, P. A.; Chen, Y. Y.; Wu, Y.; Hou, Z. Y.; Dai, Y. L.; Zhao, J. H.; Sui, C. P.; Lin, J. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small 2013, 9, 4150–4159. DOI: 10.1002/smll.201301093.

44

Shen, S.; Tang, H. Y.; Zhang, X. T.; Ren, J. F.; Pang, Z. Q.; Wang, D. G.; Gao, H. L.; Qian, Y.; Jiang, X. G.; Yang, W. L. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34, 3150–3158.

45

Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina. Chem. Mater. 1990, 2, 186–191.

46

Chanmee, T.; Ontong, P.; Kimata, K.; Itano, N. Key roles of hyaluronan and its CD44 receptor in the stemness and survival of cancer stem cells. Front. Oncol. 2015, 5, 180. DOI: 10.3389/fonc.2015.00180.

47

Burke, A.; Ding, X. F.; Singh, R.; Kraft, R. A.; Levi-Polyachenko, N.; Rylanderd, M. N.; Szot, C.; Buchanan, C.; Whitney, J.; Fisher, J. et al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. USA 2009, 106, 12897–12902. DOI: 10.1073/pnas.0905195106.

48

Samanta, D.; Meiser, J. L.; Zare, R. N. Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release. Nanoscale 2015, 7, 9497–9504.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 November 2017
Revised: 05 February 2018
Accepted: 09 February 2018
Published: 16 March 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The work is supported by Shanghai Science and Technology Development Funds (Nos. 17XD1421900, 14411968100 and 17XD1424200) and Seed Fund of Renji Hospital of Shanghai Jiao Tong University School of Medicine (No. RJZZ16-010).

Return