Journal Home > Volume 11 , Issue 8

The urgent demand for portable electronics has promoted the development of high-efficiency, sustainable, and even stretchable self-charging power sources. In this work, we propose a flexible self-charging power unit based on folded carbon (FC) paper for harvesting mechanical energy from human motion and power portable electronics. The present unit mainly consists of a triboelectric nanogenerator (FC-TENG) and a supercapacitor (FC-SC), both based on folded carbon paper, as energy harvester and storage device, respectively. This favorable geometric design provides the high Young's modulus carbon paper with excellent stretchability and enables the power unit to work even under severe deformations, such as bending, twisting, and rolling. In addition, the tensile strain can be maximized by tuning the folding angle of the triangle-folded carbon paper. Moreover, the waterproof property of the packaged device make it washable, protect it from human sweat, and enable it to work in harsh environments. Finally, the as-prepared self-charging power unit was tested by placing it on the human body to harvest mechanical energy from hand tapping, foot treading, and arm touching, successfully powering an electronic watch. This work demonstrates the impressive potential of stretchable self-charging power units, which will further promote the development of high Young's modulus materials for wearable/portable electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible self-charging power units for portable electronics based on folded carbon paper

Show Author's information Changjie Zhou1,§Yanqin Yang1,2,§Na Sun1,2,§Zhen Wen1,2( )Ping Cheng1,3,4Xinkai Xie1Huiyun Shao1Qingqing Shen1Xiaoping Chen1,2Yina Liu6Zhong Lin Wang3,4,5( )Xuhui Sun1( )
Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devicesand Joint International Research Laboratory of Carbon-Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
Nantong Textile & Silk Industrial Technology Research InstituteJiangsu Industrial Technology Research Institute of Textile & SilkNantong226314China
CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro-nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlanta, GA30332-0245USA
Department of Mathematical SciencesXi'an Jiaotong-Liverpool UniversitySuzhou215123China

§ Changjie Zhou, Yanqin Yang, and Na Sun contributed equally to this work.

Abstract

The urgent demand for portable electronics has promoted the development of high-efficiency, sustainable, and even stretchable self-charging power sources. In this work, we propose a flexible self-charging power unit based on folded carbon (FC) paper for harvesting mechanical energy from human motion and power portable electronics. The present unit mainly consists of a triboelectric nanogenerator (FC-TENG) and a supercapacitor (FC-SC), both based on folded carbon paper, as energy harvester and storage device, respectively. This favorable geometric design provides the high Young's modulus carbon paper with excellent stretchability and enables the power unit to work even under severe deformations, such as bending, twisting, and rolling. In addition, the tensile strain can be maximized by tuning the folding angle of the triangle-folded carbon paper. Moreover, the waterproof property of the packaged device make it washable, protect it from human sweat, and enable it to work in harsh environments. Finally, the as-prepared self-charging power unit was tested by placing it on the human body to harvest mechanical energy from hand tapping, foot treading, and arm touching, successfully powering an electronic watch. This work demonstrates the impressive potential of stretchable self-charging power units, which will further promote the development of high Young's modulus materials for wearable/portable electronics.

Keywords: triboelectric nanogenerator, supercapacitor, stretchable, self-charging power unit, folded, carbon paper

References(45)

1

Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071–1074.

2

Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y. -C.; Chortos, A.; Lissel, F.; Wang, G. -J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016, 539, 411–415.

3

Gong, S.; Cheng, W. L. Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater. 2017, 23, 1700648.

4

Liu, R. Y.; Wang, J.; Sun, T.; Wang, M. J.; Wu, C. S.; Zou, H. Y.; Song, T.; Zhang, X. H.; Lee, S. -T.; Wang, Z. L. et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: A self-charging power unit with a total efficiency of 10.5%. Nano Lett. 2017, 17, 4240–4247.

5

Wen, Z.; Guo, H. Y.; Zi, Y. L.; Yeh, M. -H.; Wang, X.; Deng, J. A.; Wang, J.; Li, S. M.; Hu, C. G.; Zhu, L. P. et al. Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 2016, 10, 6526–6534.

6

Shao, H. Y.; Wen, Z.; Cheng, P.; Sun, N.; Shen, Q. Q.; Zhou, C. J.; Peng, M. F.; Yang, Y. Q.; Xie, X. K.; Sun, X. H. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 2017, 39, 608–615.

7

Fan, F. -R.; Tian, Z. -Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

8

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

9

Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

10

Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. -H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.

DOI
11

Wen, Z.; Shen, Q. Q.; Sun, X. H. Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 2017, 9, 45.

12

Peng, H. S.; Fang, X. D.; Ranaei, S.; Wen, Z.; Porter, A. L. Forecasting potential sensor applications of triboelectric nanogenerators through tech mining. Nano Energy 2017, 35, 358–369.

13

Wang, J.; Wen, Z.; Zi, Y. L.; Lin, L.; Wu, C. S.; Guo, H. Y.; Xi, Y.; Xu, Y. L.; Wang, Z. L. Self-powered electrochemical synthesis of polypyrrole from the pulsed output of a triboelectric nanogenerator as a sustainable energy system. Adv. Funct. Mater. 2016, 26, 3542–3548.

14

Wang, X.; Wen, Z.; Guo, H. Y.; Wu, C. S.; He, X.; Lin, L.; Cao, X.; Wang, Z. L. Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 2016, 10, 11369–11376.

15

Hu, Q. Y.; Wang, B.; Zhong, Q. Z.; Zhong, J. W.; Hu, B.; Zhang, X. Q.; Zhou, J. Metal-free and non-fluorine paper-based generator. Nano Energy 2015, 14, 236–244.

16

Zhong, J. W.; Zhu, H. L.; Zhong, Q. Z.; Dai, J. Q.; Li, W. B.; Jang, S. -H.; Yao, Y. G.; Henderson, D.; Hu, Q. Y.; Hu, L. B. et al. Self-powered human-interactive transparent nanopaper systems. ACS Nano 2015, 9, 7399–7406.

17

Lee, J. -H.; Kim, J.; Kim, T. Y.; Al Hossain, M. S.; Kim, S. -W.; Kim, J. H. All-in-one energy harvesting and storage devices. J. Mater. Chem. A 2016, 4, 7983–7999.

18

Wang, J.; Wen, Z.; Zi, Y. L.; Zhou, P. F.; Lin, J.; Guo, H. Y.; Xu, Y. L.; Wang, Z. L. All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv. Funct. Mater. 2016, 26, 1070–1076.

19

Shen, Q. Q.; Xie, X. K.; Peng, M. F.; Sun, N.; Shao, H. Y.; Zheng, H. C.; Wen, Z.; Sun, X. H. Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects. Adv. Funct. Mater. 2018, 28, 1703420.

20

Kim, J.; Lee, J. -H.; Lee, J.; Yamauchi, Y.; Choi, C. H.; Kim, J. H. Research update: Hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability. APL Mater. 2017, 5, 073804.

21

Zi, Y. L.; Wang, Z. L. Nanogenerators: An emerging technology towards nanoenergy. APL Mater. 2017, 5, 074103.

22

Wen, Z.; Yeh, M. -H.; Guo, H. Y.; Wang, J.; Zi, Y. L.; Xu, W. D.; Deng, J. A.; Zhu, L.; Wang, X.; Hu, C. G. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2016, 2, e1600097.

23

Xi, F. B.; Pang, Y. K.; Li, W.; Jiang, T.; Zhang, L. M.; Guo, T.; Liu, G. X.; Zhang, C.; Wang, Z. L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176.

24

Pu, X.; Li, L. X.; Song, H. Q.; Du, C. H.; Zhao, Z. F.; Jiang, C. Y.; Cao, G. Z.; Hu, W. G.; Wang, Z. L. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 2015, 27, 2472–2478.

25

Yi, F.; Wang, J.; Wang, X. F.; Niu, S. M.; Li, S. M.; Liao, Q. L.; Xu, Y. L.; You, Z.; Zhang, Y.; Wang, Z. L. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano 2016, 10, 6519–6525.

26

Luo, J. J.; Tang, W.; Fan, F. R.; Liu, C. F.; Pang, Y. K.; Cao, G. Z.; Wang, Z. L. Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology. ACS Nano 2016, 10, 8078–8086.

27

Park, S.; Kim, H.; Vosgueritchian, M.; Cheon, S.; Kim, H.; Koo, J. H.; Kim, T. R.; Lee, S.; Schwartz, G.; Chang, H. et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 2014, 26, 7324–7332.

28

Lai, Y. -C.; Deng, J. A.; Niu, S. M.; Peng, W. B.; Wu, C. S.; Liu, R. Y.; Wen, Z.; Wang, Z. L. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 2016, 28, 10024– 10032.

29

Fan, Y. J.; Meng, X. S.; Li, H. Y.; Kuang, S. Y.; Zhang, L.; Wu, Y.; Wang, Z. L.; Zhu, G. Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy. Adv. Mater. 2017, 29, 1603115.

30

Li, S. M.; Wang, J.; Peng, W. B.; Lin, L.; Zi, Y. L.; Wang, S. H.; Zhang, G.; Wang, Z. L. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv. Energy Mater. 2017, 7, 1602832.

31

Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

32

Wu, C. S.; Wang, X.; Lin, L.; Guo, H. Y.; Wang, Z. L. Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 2016, 10, 4652–4659.

33

Guo, H. Y.; Yeh, M. -H.; Zi, Y. L.; Wen, Z.; Chen, J.; Liu, G. L.; Hu, C. G.; Wang, Z. L. Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 2017, 11, 4475–4482.

34

Yang, P. -K.; Lin, Z. -H.; Pradel, K. C.; Lin, L.; Li, X. H.; Wen, X. N.; He, J. -H.; Wang, Z. L. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 2015, 9, 901–907.

35

Guo, H. Y.; Yeh, M. -H.; Lai, Y. -C.; Zi, Y. L.; Wu, C. S.; Wen, Z.; Hu, C. G.; Wang, Z. L. All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 2016, 10, 10580–10588.

36

Zhang, X. H.; Lu, X. H.; Shen, Y. Q.; Han, J. B.; Yuan, L. Y.; Gong, L.; Xu, Z.; Bai, X. D.; Wei, M.; Tong, Y. X. et al. Three-dimensional WO3 nanostructures on carbon paper: Photoelectrochemical property and visible light driven photocatalysis. Chem. Commun. 2011, 47, 5804–5806.

37

Shin, H. -J.; Kim, K. K.; Benayad, A.; Yoon, S. -M.; Park, H. K.; Jung, I. -S.; Jin, M. H.; Jeong, H. -K.; Kim, J. M.; Choi, J. -Y. et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992.

38

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

39

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

40

Sun, N.; Wen, Z.; Zhao, F. P.; Yang, Y. Q.; Shao, H. Y.; Zhou, C. J.; Shen, Q. Q.; Feng, K.; Peng, M. F.; Li, Y. G. et al. All flexible electrospun papers based self-charging power system. Nano Energy 2017, 38, 210–217.

41

Chen, S. W.; Cao, X.; Wang, N.; Ma, L.; Zhu, H. R.; Willander, M.; Jie, Y.; Wang, Z. L. An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv. Energy Mater. 2017, 7, 1601255.

42

Zhong, Q. Z.; Zhong, J. W.; Hu, B.; Hu, Q. Y.; Zhou, J.; Wang, Z. L. A paper-based nanogenerator as a power source and active sensor. Energy Environ. Sci. 2013, 6, 1779–1784.

43

Zhong, Q. Z.; Zhong, J. W.; Cheng, X. F.; Yao, X.; Wang, B.; Li, W. B.; Wu, N.; Liu, K.; Hu, B.; Zhou, J. Paper-based active tactile sensor array. Adv. Mater. 2015, 27, 7130–7136.

44

Zi, Y. l.; Guo, H. Y.; Wang, J.; Wen, Z.; Li, S. M.; Hu, C. G.; Wang, Z. L. An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy 2017, 31, 302–310.

45

Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

File
12274_2018_2018_MOESM4_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 December 2017
Revised: 01 February 2018
Accepted: 03 February 2018
Published: 13 March 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The work was funded by the National Natural Science Foundation of China (No. U1432249), the National Key R & D Project from Ministry of Science and Technology (No. 2016YFA0202704), the National Key R & D Program of China (No. 2017YFA0205002), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and China Postdoctoral Science Foundation. This is also a project supported by Collaborative Innovation Center of Suzhou Nano Science & Technology. Z. W. thanks the support from China Postdoctoral Science Foundation (No. 2017M610346), Natural Science Foundation of Jiangsu Province of China (No. BK20170343) and Nantong Municipal Science and Technology Program. Y. N. L. thanks the support from Jiangsu University Natural Science Research Program (No. 16KJB110021). A patent has been filed based on the research results presented in this manuscript.

Return