Journal Home > Volume 11 , Issue 8

Lithium-sulfur batteries are promising electrochemical energy storage devices because of their high theoretical specific capacity and energy density. An ideal sulfur host should possess high conductivity and embrace the physical confinement or strong chemisorption to dramatically suppress the polysulfide dissolution. Herein, uniform TiN hollow nanospheres with an average diameter of ~160 nm have been reported as highly efficient lithium polysulfide reservoirs for high-performance lithium-sulfur batteries. Combining the high conductivity and chemical trapping of lithium polysulfides, the obtained S/TiN cathode of 70 wt.% sulfur content in the composite delivered an excellent long-life cycling performance at 0.5C and 1.0C over 300 cycles. More importantly, a stable capacity of 710.4 mAh·g?1 could be maintained even after 100 cycles at 0.2C with a high sulfur loading of 3.6 mg·cm?1. The nature of the interactions between TiN and lithium polysulfide species was investigated by X-ray photoelectron spectroscopy studies. Theoretical calculations were also carried out and the results revealed a strong binding between TiN and the lithium polysulfide species. It is expected that this class of conductive and polar materials would pave a new way for the high-energy lithium-sulfur batteries in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries

Show Author's information Chuanchuan Li1Jingjing Shi3Lin Zhu1Yingyue Zhao1Jun Lu3( )Liqiang Xu1,2( )
Key Laboratory of Colloid & Interface Chemistry (Shandong University)Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjin300071China
Faculty of ScienceBeijing University of Chemical TechnologyBeijing100000China

Abstract

Lithium-sulfur batteries are promising electrochemical energy storage devices because of their high theoretical specific capacity and energy density. An ideal sulfur host should possess high conductivity and embrace the physical confinement or strong chemisorption to dramatically suppress the polysulfide dissolution. Herein, uniform TiN hollow nanospheres with an average diameter of ~160 nm have been reported as highly efficient lithium polysulfide reservoirs for high-performance lithium-sulfur batteries. Combining the high conductivity and chemical trapping of lithium polysulfides, the obtained S/TiN cathode of 70 wt.% sulfur content in the composite delivered an excellent long-life cycling performance at 0.5C and 1.0C over 300 cycles. More importantly, a stable capacity of 710.4 mAh·g?1 could be maintained even after 100 cycles at 0.2C with a high sulfur loading of 3.6 mg·cm?1. The nature of the interactions between TiN and lithium polysulfide species was investigated by X-ray photoelectron spectroscopy studies. Theoretical calculations were also carried out and the results revealed a strong binding between TiN and the lithium polysulfide species. It is expected that this class of conductive and polar materials would pave a new way for the high-energy lithium-sulfur batteries in the future.

Keywords: lithium-sulfur batteries, TiN hollow spheres, polysulfide trapping, DFT calculations

References(51)

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Li, S. L.; Li, A. H.; Zhang, R. R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical porous metal ferriteball-in-ball hollow spheres: General synthesis, formation mechanisms and high performance as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116–1127.

3

Liu, B.; Wang, X. F.; Liu, B. Y.; Wang, Q. F.; Tan, D. S.; Song, W. F.; Hou, X. J.; Chen, D.; Shen, G. Z. Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Res. 2013, 6, 525–534.

4

Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

5

Xia, H.; Xiong, W.; Lim, C. K.; Yao, Q. F.; Wang, Y. D.; Xie, J. P. Hierarchical TiO2-B nanowire@α-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Res. 2014, 7, 1797–1808.

6

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

7

Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94–116.

8

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

9

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

10

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

11

He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS Nano 2013, 7, 10920–10930.

12

Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904–5908.

13

Zhang, X. Q.; He, B.; Li, W. C.; Lu, A. H. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 2018, 11, 1238–1246.

14

Cheng, X. B.; Huang, J. Q.; Zhang, Q.; Peng, H. J.; Zhao, M. Q.; Wei, F. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries. Nano Energy 2014, 4, 65–72.

15

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur-battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

16

Zheng, M. B.; Zhang, S. T.; Chen, S. Q.; Lin, Z. X.; Pang, H.; Yu, Y. Activated graphene with tailored pore structure parameters for long cycle-life lithium-sulfur batteries. Nano Res. 2017, 10, 4305–4317.

17

Rehman, S.; Guo, S. J.; Hou, Y. L. Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery. Adv. Mater. 2016, 28, 3167–3172.

18

Dong, K.; Wang, S. P.; Zhang, H. Y.; Wu, J. P. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries. Mater. Res. Bull. 2013, 48, 2079– 2083.

19

He, Y. Y.; Xu, L. Q.; Li, C. C.; Chen, X. X.; Xu, G.; Jiao, X. Y. Mesoporous Mn-Sn bimetallic oxide nanocubes as long cycle life anodes for Li-ion half/full cells and sulfur hosts for Li-S batteries. Nano Res. 2018, 11, 3555–3566.

20

Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

21

Liang, X.; Nazar, L. F. In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS Nano 2016, 10, 4192–4198.

22

Wang, X. L.; Li, G.; Li, J. D.; Zhang, Y. N.; Wook, A.; Yu, A. P.; Chen, Z. W. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 2533–2538.

23

Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. High-performance Li-S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 2017, 10, 3698–3705.

24

Hou, Y. P.; Mao, H. Z.; Xu, L. Q. MIL-100 (V) and MIL-100 (V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res. 2017, 10, 344–353.

25

Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

26

Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.

27

Tao, X. Y.; Wang, J. G.; Ying, Z, G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting Magnéli-phase TinO2n-1 Nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288–5294.

28

Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

29

Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990–12995.

30

Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

31

Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065.

32

Avasarala, B.; Haldar, P. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochim Acta 2010, 55, 9024–9034.

33

Dong, S. M.; Chen, X.; Gu, L.; Zhou, X. H.; Li, L. F.; Liu, Z. H.; Han, P. X.; Xu, H. X.; Yao, J. H.; Wang, H. B. et al. . One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy Environ. Sci. 2011, 4, 3502–3508.

34

Tian, X. L.; Luo, J. M.; Nan, H. X.; Zou, H. B.; Chen, R.; Shu, T.; Li, X. H.; Li, Y. W.; Somh, H. Y.; Liao, S. J. et al. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 1575–1583.

35

Zhang, J. W.; Zhang, J. W.; Cai, W.; Zhang, F. L.; Yu, L. G.; Wu, Z. S.; Zhang, Z. J. Improving electrochemical properties of spinel lithium titanate by incorporation of titanium nitride via high-energy ball-milling. J. Power Sources 2012, 211, 133–139.

36

Cui, Z. M.; Zu, C. X.; Zhou, W. D.; Manthiram, A.; Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926–6931.

37

Liang, Z.; Zheng, G. Y.; Li, W. Y.; Seh, Z. W.; Yao, H. B.; Yan, K. S.; Cui, Y. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 2014, 8, 5249–5256.

38

Li, Z.; Wu, H. B.; Lou, X. W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 3061–3070.

39

Li, Y.; Xu, J.; Feng, T.; Yao, Q. F.; Xie, J. P.; Xia, H. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 2017, 27, 1606728.

40

Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.

41

Balogun, M. S.; Yu, M. H, ; Li, C.; Zhai, T.; Liu, Y.; Lu, X. H.; Tong, Y. X. Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. J. Mater. Chem. A 2014, 2, 10825–10829.

42

Zhao, D.; Cui, Z. T.; Wang, S. G.; Qin, J. W.; Cao, M. H. VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 7914–7923.

43

Zhou, X. H.; Shang, C. Q.; Gu, L.; Dong, S. M.; Chen, X.; Han, P. X.; Li, L. F.; Yao, J. H.; Liu, Z. H.; Xu, H. X. et al. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2011, 3, 3058–3063.

44

Hao, Z. X.; Yuan, L. X.; Chen, C. J.; Xiang, J. W.; Li, Y. Y.; Huang, Z. M.; Hu, P.; Huang, Y. H. TiN as a simple and efficient polysulfide immobilizer for lithium–sulfur batteries. J. Mater. Chem. A 2016, 4, 17711–17717.

45

Deng, D. R.; An, T. H.; Li, Y. J.; Wu, Q. H.; Zheng, M. S.; Dong, Q. F. Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li–S batteries. J. Mater. Chem. A 2016, 4, 16184–16190.

46

Mosavati, N.; Chitturi, V. R.; Salley, S. O.; Ng, K. Y. S. Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries. J. Power Sources 2016, 321, 87–93.

47

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

48

Zhang, J.; You, C. Y.; Zhang, W. H.; Wang, J.; Guo, S. H.; Yang, R.; Xu, Y. H. Conductive bridging effect of TiN nanoparticles on the electrochemical performance of TiN@CNT-S composite cathode. Electrochim. Acta 2017, 250, 159–166.

49

Chen, X. B.; Glans, P. A.; Qiu, X. F.; Dayal, S.; Jennings, W. D.; Smith, K. E.; Burda, C.; Guo, J. H. X-ray spectroscopic study of the electronic structure of visible-light responsive N-, C- and S-doped TiO2. J. Electron Spectrosc. Relat. Phenom. 2008, 162, 67–73.

50

Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

51

Pang, Q.; Nazar, L. F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 2016, 10, 4111–4118.

File
12274_2018_2017_MOESM1_ESM.pdf (1,022.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 December 2017
Revised: 21 January 2018
Accepted: 01 February 2018
Published: 12 March 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work is supported by the National Nature Science Foundation of China (No. 21471091), 111 Project (No. B12015), the Fundamental Research Funds of Shandong University (No. 2015JC007), Academy of Sciences large apparatus United Fund (No. 11179043), and the Taishan Scholar Project of Shandong Province (No. ts201511004).

Return