Journal Home > Volume 11 , Issue 8

A thickness-insensitive cathode interlayer (CIL) is necessary for large-area polymer solar cells (PSCs), in which thickness variation is unavoidable. These CIL materials are typically based on n-type conjugated polymer/molecule backbones, which show strong light absorption in the visible/near-infrared (NIR) region. This interferes with the sunlight absorption by the active layer and deteriorates device efficiency. In this study, we developed graphene quantum dots functionalized with ammonium iodide (GQD-NI) at the edge as a thickness-insensitive CIL with high optical transparency. The peripheral ammonium iodide groups of GQD-NI formed the desired interfacial dipole with the cathode to decrease the work function. The graphene basal planes of GQD-NI with a lateral size of ca. 3 nm demonstrated a good conductivity of 3.56 × 10–6 S·cm–1 and high transparency in the visible/NIR region (λmaxabs = 228 nm). Moreover, GQD-NI was readily soluble in polar organic solvents, e.g., methanol, which enabled multilayer device fabrication with orthogonal solvent processing. As a result, the PSC device with GQD-NI as the CIL exhibited a power conversion efficiency (PCE) of 7.49%, which was much higher than that of the device without the CIL (PCE = 5.38%) or with calcium as the CIL (PCE = 6.72%). Moreover, the PSC device performance of GQD-NI was insensitive to the GQD-NI layer thickness in the range of 2–22 nm. These results indicate that GQD-NI is a very promising material for application as a CIL in large-area printed PSCs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells

Show Author's information Han Xu1,2,§Lu Zhang2,§Zicheng Ding2Junli Hu1( )Jun Liu2( )Yichun Liu1( )
Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchun130024China
State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China

§ Han Xu and Lu Zhang contributed equally to this work.

Abstract

A thickness-insensitive cathode interlayer (CIL) is necessary for large-area polymer solar cells (PSCs), in which thickness variation is unavoidable. These CIL materials are typically based on n-type conjugated polymer/molecule backbones, which show strong light absorption in the visible/near-infrared (NIR) region. This interferes with the sunlight absorption by the active layer and deteriorates device efficiency. In this study, we developed graphene quantum dots functionalized with ammonium iodide (GQD-NI) at the edge as a thickness-insensitive CIL with high optical transparency. The peripheral ammonium iodide groups of GQD-NI formed the desired interfacial dipole with the cathode to decrease the work function. The graphene basal planes of GQD-NI with a lateral size of ca. 3 nm demonstrated a good conductivity of 3.56 × 10–6 S·cm–1 and high transparency in the visible/NIR region (λmaxabs = 228 nm). Moreover, GQD-NI was readily soluble in polar organic solvents, e.g., methanol, which enabled multilayer device fabrication with orthogonal solvent processing. As a result, the PSC device with GQD-NI as the CIL exhibited a power conversion efficiency (PCE) of 7.49%, which was much higher than that of the device without the CIL (PCE = 5.38%) or with calcium as the CIL (PCE = 6.72%). Moreover, the PSC device performance of GQD-NI was insensitive to the GQD-NI layer thickness in the range of 2–22 nm. These results indicate that GQD-NI is a very promising material for application as a CIL in large-area printed PSCs.

Keywords: graphene quantum dots, ammonium, edge-functionalization, cathode interlayer, polymer solar cells

References(51)

1

Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

2

Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161.

3

Kang, H.; Kim, G.; Kim, J.; Kwon, S.; Kim, H.; Lee, K. Bulk-heterojunction organic solar cells: Five core technologies for their commercialization. Adv. Mater. 2016, 28, 7821–7861.

4

Zhao, R. Y.; Dou, C. D.; Liu, J.; Wang, L. X. An alternating polymer of two building blocks based on B←N unit: Non-fullerene acceptor for organic photovoltaics. Chinese J. Polym. Sci. 2017, 35, 198–206.

5

Dou, C. D.; Liu, J.; Wang, L. X. Conjugated polymers containing B←N unit as electron acceptors for all-polymer solar cells. Sci. China Chem. 2017, 60, 450–459.

6

Chueh, C. C.; Li, C. -Z.; Jen, A. K. -Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 2015, 8, 1160–1189.

7

Xu, B. W.; Zheng, Z.; Zhao, K.; Hou, J. H. A bifunctional interlayer material for modifying both the anode and cathode in highly efficient polymer solar cells. Adv. Mater. 2016, 28, 434–439.

8

Nian, L.; Zhang, W. Q.; Zhu, N.; Liu, L. L.; Xie, Z. Q.; Wu, H. B.; Würthner, F.; Ma, Y. G. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. J. Am. Chem. Soc. 2015, 137, 6995–6998.

9

Sun, Y. M.; Takacs, C. J.; Cowan, S. R.; Seo, J. H.; Gong, X.; Roy, A.; Heeger, A. J. Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer. Adv. Mater. 2011, 23, 2226–2230.

10

Tan, Z. A, ; Zhang, W. Q.; Zhang, Z. G.; Qian, D. P.; Huang, Y.; Hou, J. H.; Li, Y. F. High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode. Adv. Mater. 2012, 24, 1476–1481.

11

Shrotriya, V.; Li, G.; Yao, Y.; Chu, C. W.; Yang, Y. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 2006, 88, 073508.

12

Duan, C. H.; Zhang, K.; Zhong, C. M.; Huang, F.; Cao, Y. Recent advances in water/alcohol-soluble π-conjugated materials: New materials and growing applications in solar cells. Chem. Soc. Rev. 2013, 42, 9071–9104.

13

He, Z. C.; Zhong, C. M.; Su, S. J.; Xu, M.; Wu, H. B.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 2012, 6, 591–595.

14

Wang, J.; Lin, K.; Zhang, K.; Jiang, X. F.; Mahmood, K.; Ying, L.; Huang, F.; Cao, Y. Crosslinkable amino-functionalized conjugated polymer as cathode interlayer for efficient inverted polymer solar cells. Adv. Energy Mater. 2016, 6, 1502563.

15

Min, C.; Shi, C. S.; Zhang, W. J.; Jiu, T. G.; Chen, J. S.; Ma, D. G.; Fang, J. F. A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs. Angew. Chem., Int. Ed. 2013, 52, 3417–3420.

16

Liao, S. H.; Li, Y. L.; Jen, T. H.; Cheng, Y. S.; Chen, S. A. Multiple functionalities of polyfluorene grafted with metal ion-intercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells: Optical interference, hole blocking, interfacial dipole, and electron conduction. J. Am. Chem. Soc. 2012, 134, 14271–14274.

17

Seo, J. H.; Gutacker, A.; Sun, Y. M.; Wu, H. B.; Huang, F.; Cao, Y.; Scherf, U.; Heeger, A. J.; Bazan, G. C. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J. Am. Chem. Soc. 2011, 133, 8416–8419.

18

Kang, R.; Oh, S. H.; Kim, D. Y. Influence of the ionic functionalities of polyfluorene derivatives as a cathode interfacial layer on inverted polymer solar cells. ACS Appl. Mater. Interfaces 2014, 6, 6227–6236.

19

Hoven, C. V.; Garcia, A.; Bazan, G. C.; Nguyen, T. -Q. Recent applications of conjugated polyelectrolytes in optoelectronic devices. Adv. Mater. 2008, 20, 3793–3810.

20

Huang, F.; Wu, H. B.; Wang, D. L.; Yang, W.; Cao, Y. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem. Mater. 2004, 16, 708–716.

21

Zhou, Y. H.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J. et al. A universal method to produce low-work function electrodes for organic electronics. Science 2012, 336, 327–332.

22

Yao, K.; Salvador, M.; Chueh, C. -C.; Xin, X. -K.; Xu, Y. -X.; de Quilettes, D. W.; Hu, T.; Chen, Y. W.; Ginger, D. S.; Jen, A. K. -Y. A general route to enhance polymer solar cell performance using plasmonic nanoprisms. Adv. Energy Mater. 2014, 4, 1400206.

23

Liu, S. J.; Zhang, K.; Lu, J. M.; Zhang, J.; Yip, H. L.; Huang, F.; Cao, Y. High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. J. Am. Chem. Soc. 2013, 135, 15326–15329.

24

Wu, Z. H.; Sun, C.; Dong, S.; Jiang, X. F.; Wu, S. P.; Wu, H. B.; Yip, H. L.; Huang, F.; Cao, Y. n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 2016, 138, 2004–2013.

25

Liu, Y.; Page, Z. A.; Russell, T. P.; Emrick, T. Finely tuned polymer interlayers enhance solar cell efficiency. Angew. Chem., Int. Ed. 2015, 54, 11485–11489.

26

Page, Z. A.; Liu, Y.; Duzhko, V. V.; Russell, T. P.; Emrick, T. Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency. Science 2014, 346, 441–444.

27

Li, S. S.; Lei, M.; Lv, M. L.; Watkins, S. E.; Tan, Z. A.; Zhu, J.; Hou, J. H.; Chen, X. W.; Li, Y. F. [6, 6]-phenyl-C61-butyric acid dimethylamino ester as a cathode buffer layer for high-performance polymer solar cells. Adv. Energy Mater. 2013, 3, 1569–1574.

28

Zhang, Z. -G.; Qi, B. Y.; Jin, Z. W.; Chi, D.; Qi, Z. F.; Li, Y. F.; Wang, J. Z. Perylene diimides: A thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy Environ. Sci. 2014, 7, 1966–1973.

29

Hu, L.; Wu, F. Y.; Li, C. Q.; Hu, A. F.; Hu, X. T.; Zhang, Y.; Chen, L.; Chen, Y. W. Alcohol-soluble n-type conjugated polyelectrolyte as electron transport layer for polymer solar cells. Macromolecules 2015, 48, 5578–5586.

30

Liu, J.; Durstock, M.; Dai, L. M. Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ. Sci. 2014, 7, 1297–1306.

31

Liu, J.; Xue, Y. H.; Gao, Y. X.; Yu, D. S.; Durstock, M.; Dai, L. M. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv. Mater. 2012, 24, 2228–2233.

32

Liu, J.; Kim, G. -H.; Xue, Y. H.; Kim, J. Y.; Baek, J. -B.; Durstock, M.; Dai, L. M. Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells. Adv. Mater. 2014, 26, 786–790.

33

Li, S. S.; Tu, K. H.; Lin, C. C.; Chen, C. W.; Chhowalla, M. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 2010, 4, 3169–3174.

34

Yun, J. M.; Yeo, J. S.; Kim, J.; Jeong, H. G.; Kim, D. Y.; Noh, Y. J.; Kim, S. S.; Ku, B. C.; Na, S. I. Solution-processable reduced graphene oxide as a novel alternative to PEDOT: PSS hole transport layers for highly efficient and stable polymer solar cells. Adv. Mater. 2011, 23, 4923–4928.

35

Yeo, J. -S.; Yun, J. -M.; Jung, Y. -S.; Kim, D. -Y.; Noh, Y. -J.; Kim, S. -S.; Na, S. -I. Sulfonic acid-functionalized, reduced graphene oxide as an advanced interfacial material leading to donor polymer-independent high-performance polymer solar cells. J. Mater. Chem. A 2014, 2, 292–298.

36

Yang, D.; Zhou, L. Y.; Chen, L. C.; Zhao, B.; Zhang, J.; Li, C. Chemically modified graphene oxides as a hole transport layer in organic solar cells. Chem. Commun. 2012, 48, 8078–8080.

37

Yang, D.; Zhou, L. Y.; Yu, W.; Zhang, J.; Li, C. Work-function-tunable chlorinated graphene oxide as an anode interface layer in high-efficiency polymer solar cells. Adv. Energy Mater. 2014, 4, 1400591.

38

Konios, D.; Kakavelakis, G.; Petridis, C.; Savva, K.; Stratakisab, E.; Kymakis, E. Highly efficient organic photovoltaic devices utilizing work-function tuned graphene oxide derivatives as the anode and cathode charge extraction layers. J. Mater. Chem. A 2016, 4, 1612–1623.

39

Kakavelakis, G.; Konios, D.; Stratakis, E.; Kymakis, E. Enhancement of the efficiency and stability of organic photovoltaic devices via the addition of a lithium-neutralized graphene oxide electron-transporting layer. Chem. Mater. 2014, 26, 5988–5993.

40

Hu, A. F.; Wang, Q. X.; Chen, L.; Hu, X. T.; Zhang, Y.; Wu, Y. F.; Chen, Y. C. In situ formation of ZnO in graphene: A facile way to produce a smooth and highly conductive electron transport layer for polymer solar cells. ACS Appl. Mater. Interfaces 2015, 7, 16078–16085.

41

Kim, J.; Lee, H.; Lee, S. J.; da Silva, W. J.; bin Mohd Yusoffa, A. R.; Jang, J. Graphene oxide grafted polyethylenimine electron transport materials for highly efficient organic devices. J. Mater. Chem. A 2015, 3, 22035–22042.

42

Chao, Y. -H.; Wu, J. -S.; Wu, C. -E.; Jheng, J. -F.; Wang, C. -L.; Hsu, C. -S. Solution-processed (graphene oxide)–(d0 transition metal oxide) composite anodic buffer layers toward high-performance and durable inverted polymer solar cells. Adv. Energy Mater. 2013, 3, 1279–1285.

43

Li, M. M.; Ni, W.; Kan, B.; Wan, X. J.; Zhang, L.; Zhang, Q.; Long, G. K.; Zuo, Y.; Chen, Y. S. Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Phys. Chem. Chem. Phys. 2013, 15, 18973–18978.

44

Ding, Z. C.; Hao, Z.; Meng, B.; Xie, Z. Y.; Liu, J.; Dai, L. M. Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells. Nano Energy 2015, 15, 186–192.

45

Ding, Z. C.; Miao, Z. S.; Xie, Z. Y.; Liu, J. Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells. J. Mater. Chem. A 2016, 4, 2413–2418.

46

Yang, H. B.; Dong, Y. Q.; Wang, X. Z.; Khoo, S. Y.; Liu, B. Cesium carbonate functionalized graphene quantum dots as stable electron-selective layer for improvement of inverted polymer solar cells. ACS Appl. Mater. Interfaces 2014, 6, 1092–1099.

47

Choi, H. -J.; Jung, S. -M.; Seo, J. -M.; Chang, D. W.; Dai, L. M.; Baek, J. -B. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 2012, 1, 534–551.

48

Shivananju, B. N.; Yu, W. Z.; Liu, Y.; Zhang, Y. P.; Lin, B.; Li, S. J.; Bao, Q. L. The roadmap of graphene-based optical biochemical sensors. Adv. Funct. Mater. 2017, 27, 1603918.

49

Tetsuka, H.; Nagoya, A.; Fukusumi, T.; Matsui, T. Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 2016, 28, 4632–4638.

50

Meng, B.; Fu, Y. Y.; Xie, Z. Y.; Liu, J.; Wang, L. X. Phosphonate-functionalized donor polymer as an underlying interlayer to improve active layer morphology in polymer solar cells. Macromolecules 2014, 47, 6246–6251.

51

Li, C. Z.; Chueh, C. C.; Ding, F. Z.; Yip, H. -L.; Liang, P. -W.; Li, X. S.; Jen, A. K. -Y. Doping of fullerenes via anion-induced electron transfer and its implication for surfactant facilitated high performance polymer solar cells. Adv. Mater. 2013, 25, 4425–4430.

File
12274_2018_2015_MOESM1_ESM.pdf (990 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 October 2017
Revised: 01 February 2018
Accepted: 03 February 2018
Published: 10 March 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors are grateful for the financial supports by the National Basic Research Program of China (No. 2014CB643504), the National Natural Science Foundation of China (Nos. 21625403 and 51503198), the 111 project (No. B13013), Jilin Scientific and Technological Development Program (No. 20170519003JH), Northeast Normal University (No. 130028724), and State Key Laboratory of Luminescence and Applications (No. SKLA-2016-02).

Return