Journal Home > Volume 11 , Issue 8

A major impediment in the development of chitosan nanoparticles (CTS NPs) as effective drug delivery vesicles is their rapid clearance from blood and endosome entrapment. To overcome these problems, a convenient and promising template system was developed by decorating poly(methacrylic acid) (PMAA) to the surface of 10-hydroxy camptothecin (HCPT)-loaded CTS NPs (HCPT-CTS/PMAA NPs). The results show that the presence of negatively charged PMAA significantly elongated the blood circulation time of HCPT-CTS NPs from 12 to 24 h, and reduced the blood clearance (Cl) from 30.57 to 6.72 mL/h in vivo. The calculated area under curve (AUC0-24h) and terminal elimination half-life (t1/2) of HCPT-CTS/PMAA NPs were 4.37-fold and 2.48-fold compared with those of HCPT-CTS NPs. Furthermore, the positively charged HCPT-CTS/PMAA NPs triggered by tumor acidic microenvironment (pH 6.5) result in a 453-fold higher cellular uptake than the negatively charged counterparts at pH 7.4. Additionally, HCPT-CTS/PMAA NPs have the ability to escape endosomal entrapment via "proton sponge effect" after incubation with HepG2 cells for 3 h at pH 6.5. Taken together, these findings open up a convenient, low-cost, but effective way to prepare HCPT-CTS/PMAA NPs as a candidate for developing vectors with enhanced long blood circulation and endosomal escape ability in future clinical experiments.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Convenient preparation of charge-adaptive chitosan nanomedicines for extended blood circulation and accelerated endosomal escape

Show Author's information Yapei Zhang1Yingying Li1Jinlong Ma1Xinyu Wang1Zhi Yuan1,2( )Wei Wang1
Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071China
Collaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjin300071China

Abstract

A major impediment in the development of chitosan nanoparticles (CTS NPs) as effective drug delivery vesicles is their rapid clearance from blood and endosome entrapment. To overcome these problems, a convenient and promising template system was developed by decorating poly(methacrylic acid) (PMAA) to the surface of 10-hydroxy camptothecin (HCPT)-loaded CTS NPs (HCPT-CTS/PMAA NPs). The results show that the presence of negatively charged PMAA significantly elongated the blood circulation time of HCPT-CTS NPs from 12 to 24 h, and reduced the blood clearance (Cl) from 30.57 to 6.72 mL/h in vivo. The calculated area under curve (AUC0-24h) and terminal elimination half-life (t1/2) of HCPT-CTS/PMAA NPs were 4.37-fold and 2.48-fold compared with those of HCPT-CTS NPs. Furthermore, the positively charged HCPT-CTS/PMAA NPs triggered by tumor acidic microenvironment (pH 6.5) result in a 453-fold higher cellular uptake than the negatively charged counterparts at pH 7.4. Additionally, HCPT-CTS/PMAA NPs have the ability to escape endosomal entrapment via "proton sponge effect" after incubation with HepG2 cells for 3 h at pH 6.5. Taken together, these findings open up a convenient, low-cost, but effective way to prepare HCPT-CTS/PMAA NPs as a candidate for developing vectors with enhanced long blood circulation and endosomal escape ability in future clinical experiments.

Keywords: chitosan, poly(methyl methacrylate), blood circulation, charge reverse, endosomal escape

References(52)

1

Yan, L. S.; Crayton, S. H.; Thawani, J. P.; Amirshaghaghi, A.; Tsourkas, A.; Cheng, Z. L. A pH-responsive drug-delivery platform based on glycol chitosan-coated liposomes. Small 2015, 11, 4870–4874.

2

Shi, G. -N.; Zhang, C. -N.; Xu, R.; Niu, J. -F.; Song, H. -J.; Zhang, X. -Y.; Wang, W. -W.; Wang, Y. -M.; Li, C.; Wei, X. -Q. et al. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials 2017, 113, 191–202.

3

Shen, B. B.; Ma, Y.; Yu, S. Y.; Ji, C. H. Smart multifunctional magnetic nanoparticle-based drug delivery system for cancer thermo-chemotherapy and intracellular imaging. ACS Appl. Mater. Interfaces 2016, 8, 24502–24508.

4

Richard, I.; Thibault, M.; De Crescenzo, G.; Buschmann, M. D.; Lavertu, M. Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules 2013, 14, 1732–1740.

5

Wu, Y. K.; Wu, J.; Cao, J.; Zhang, Y. J.; Xu, Z.; Qin, X. Y.; Wang, W.; Yuan, Z. Facile fabrication of poly(acrylic acid) coated chitosan nanoparticles with improved stability in biological environments. J. Pharmaceutics Biopharmaceutics 2017, 112, 148–154.

6

Xie, Y.; Qiao, H. Z.; Su, Z. G.; Chen, M. L.; Ping, Q. N.; Sun, M. J. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Biomaterials 2014, 35, 7978–7991.

7

Zhang, L. L.; Liu, Y.; Liu, G.; Xu, D.; Liang, S.; Zhu, X. Y.; Lu, Y. F.; Wang, H. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Res. 2016, 9, 2424–2432.

8

Sheng, Y.; Liu, C. S.; Yuan, Y.; Tao, X. Y.; Yang, F.; Shan, X. Q.; Zhou, H. J.; Xu, F. Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan. Biomaterials 2009, 30, 2340–2348.

9

Piao, J. G.; Gao, F.; Li, Y. N.; Yu, L.; Liu, D.; Tan, Z. B.; Xiong, Y. J.; Yang, L. H.; You, Y. Z. pH-sensitive zwitterionic coating of gold nanocages improves tumor targeting and photothermal treatment efficacy. Nano Res. 2018, 11, 3193–3204.

10

Li, J. G.; Yu, X. S.; Wang, Y.; Yuan, Y. Y.; Xiao, H.; Cheng, D.; Shuai, X. T. A reduction and pH dual-sensitive polymeric vector for long-circulating and tumor-targeted siRNA delivery. Adv. Mater. 2014, 26, 8217–8224.

11

Zhang, K.; Jia, Y. G.; Tsai, I. H.; Strandman, S.; Ren, L.; Hong, L. Z.; Zhang, G. Z.; Guan, Y.; Zhang, Y. J.; Zhu, X. X. "Bitter-sweet" polymeric micelles formed by block copolymers from glucosamine and cholic acid. Biomacromolecules 2017, 18, 778–786.

12

Wang, S.; Zhang, L.; Dong, C. H.; Su, L.; Wang, H. J.; Chang, J. Smart pH-responsive upconversion nanoparticles for enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy. Chem. Commun. 2015, 51, 406–408.

13

Yang, W.; Zhang, L.; Wang, S. L.; White, A. D.; Jiang, S. Y. Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials 2009, 30, 5617–5621.

14

Jia, Y. G.; Zhu, X. X. Thermo- and pH-responsive copolymers bearing cholic acid and oligo(ethylene glycol) pendants: Self-assembly and pH-controlled release. ACS Appl. Mater. Interfaces 2015, 7, 24649–24655.

15

Hu, X. G.; Gao, X. H. Silica-polymer dual layer-encapsulated quantum dots with remarkable stability. ACS Nano 2010, 4, 6080–6086.

16

Liu, R. Y.; Li, Y.; Zhang, Z. Z.; Zhang, X. Drug carriers based on highly protein-resistant materials for prolonged in vivo circulation time. Regen. Biomater. 2015, 2, 125–133.

17

Kanamala, M.; Wilson, W. R.; Yang, M. M.; Palmer, B. D.; Wu, Z. M. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016, 85, 152–167.

18

Shen, T.; Guan, S. L.; Gan, Z. H.; Zhang, G.; Yu, Q. S. Polymeric micelles with uniform surface properties and tunable size and charge: Positive charges improve tumor accumulation. Biomacromolecules 2016, 17, 1801–1810.

19

Sun, M. J.; Li, J.; Zhang, C. T.; Xie, Y.; Qiao, H. Z.; Su, Z. G.; Oupický, D.; Ping, Q. N. Arginine-modified nanostructured lipid carriers with charge-reversal and pH-sensitive membranolytic properties for anticancer drug delivery. Adv. Healthc. Mater. 2017, 6, 1600693.

20

Ding, H.; Portilla-Arias, J.; Patil, R.; Black, K. L.; Ljubimova, J. Y.; Holler, E. The optimization of polymalic acid peptide copolymers for endosomolytic drug delivery. Biomaterials 2011, 32, 5269–5278.

21

Hühn, D.; Kantner, K.; Geidel, C.; Brandholt, S.; De Cock, I.; Soenen, S. J. H.; Riveragil, P.; Montenegro, J. M.; Braeckmans, K.; Müllen, K. et al. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge. ACS Nano 2013, 7, 3253–3263.

22

Hu, D. D.; Xu, Z. P.; Hu, Z. Y.; Hu, B. H.; Yang, M. Y.; Zhu, L. J. pH-triggered charge-reversal silk sericin-based nanoparticles for enhanced cellular uptake and doxorubicin delivery. ACS Sustainble Chem. Eng. 2017, 5, 1638-1647.

23

Yan, X.; Yu, Q. S.; Guo, L. Y.; Guo, W. X.; Guan, S. L.; Tang, H.; Lin, S. S.; Gan, Z. H. Positively charged combinatory drug delivery systems against multi-drug-resistant breast cancer: Beyond the drug combination. ACS Appl. Mater. Interfaces 2017, 9, 6804–6815.

24

Qian, J.; Gao, X. H. Triblock copolymer-encapsulated nanoparticles with outstanding colloidal stability for siRNA delivery. ACS Appl. Mater. Interfaces 2013, 5, 2845–2852.

25

Hu, Y. C.; Gong, X.; Zhang, J. M.; Chen, F. Q.; Fu, C. M.; Li, P.; Zou, L.; Zhao, G. Activated charge-reversal polymeric nano-system: The promising strategy in drug delivery for cancer therapy. Polymers 2016, 8, 99.

26

Yuan, Y.Y.; Mao, C. Q.; Du, X. J.; Du, J. Z.; Wang, F.; Wang, J. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv. Mater. 2012, 24, 5476-5480.

27

Chen, J. J.; Ding, J. X.; Wang, Y. C.; Cheng, J. J.; Ji, S. X. Zhuang, X, L. Chen, X. S. Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv. Mater. 2017, 29, 1701170.

28

Mo, R.; Sun, Q.; Xue, J. W.; Li, N.; Li, W. Y.; Zhang, C.; Ping, Q, N. Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Adv. Mater. 2012, 24, 3659-3665.

29

Arnold, A. E.; Czupiel, P.; Shoichet, M. Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids. J. Control. Release 2017, 259, 3–15.

30

Wang, F. H.; Zhang, W. J.; Shen, Y. Y.; Huang, Q.; Zhou, D. J.; Guo, S. R. Efficient RNA delivery by integrin-targeted glutathione responsive polyethyleneimine capped gold nanorods. Acta Biomater. 2015, 23, 136–146.

31

Chen, J. L.; Luo, J.; Zhao, Y.; Pu, L. Y.; Lu, X. J.; Gao, R.; Wang, G.; Gu, Z. W. Increase in transgene expression by pluronic L64-mediated endosomal/lysosomal escape through its membrane-disturbing action. ACS Appl. Mater. Interfaces 2015, 7, 7282–7293.

32

Dobay, M. P.; Schmidt, A.; Mendoza, E.; Bein, T.; Rädler, J. O. Cell type determines the light-induced endosomal escape kinetics of multifunctional mesoporous silica nanoparticles. Nano Lett. 2013, 13, 1047–1052.

33

Gu, W. Y.; Jia, Z. F.; Truong, N. P.; Prasadam, I.; Xiao, Y.; Monteiro, M. J. Polymer nanocarrier system for endosome escape and timed release of siRNA with complete gene silencing and cell death in cancer cells. Biomacromolecules 2013, 14, 3386–3389.

34

Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 2013, 31, 638–646.

35

Leroueil, P. R.; Berry, S. A.; Duthie, K.; Han, G.; Rotello, V. M.; McNerny, D. Q.; Baker, J. R.; Orr, B. G.; Holl, M. M. B. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 2008, 8, 420–424.

36

Bieber, T.; Meissner, W.; Kostin, S.; Niemann, A.; Elsasser, H. P. Intracellular route and transcriptional competence of polyethylenimine-DNA complexes. J. Control. Release 2002, 82, 441–454.

37

Wang, C. F.; Lin, Y. X.; Jiang, T.; He, F.; Zhuo, R. X. Polyethylenimine-grafted polycarbonates as biodegradable polycations for gene delivery. Biomaterials 2009, 30, 4824–4832.

38

Wen, Y. T.; Guo, Z. H.; Du, Z.; Fang, R.; Wu, H. M.; Zeng, X.; Wang, C.; Feng, M.; Pan, S. R. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives. Biomaterials 2012, 33, 8111–8121.

39

Roth, J. A.; Cristiano, R. J. Gene therapy for cancer: What have we done and where are we going? J. Natl. Cancer Inst. 1997, 89, 21–39.

40

Xu, Q. X.; Wang, C. H.; Pack, D. W. Polymeric carriers for gene delivery: Chitosan and poly(amidoamine) dendrimers. Curr. Pharmaceut. Des. 2010, 16, 2350–2368.

41

Tian, Q.; Zhang, C. N.; Wang, X. H.; Wang, W.; Huang, W.; Cha, R. T.; Wang, C. H.; Yuan, Z.; Liu, M.; Wan, H. Y. et al. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials 2010, 31, 4748–4756.

42

Lee, Y.; Miyata, K.; Oba, M.; Ishii, T.; Fukushima, S.; Han, M. R.; Koyama, H.; Nishiyama, N.; Kataoka, K. Charge-conversion ternary polyplex with endosome disruption moiety: A technique for efficient and safe gene delivery. Angew. Chem., Int. Ed. 2008, 47, 5163–5166.

43

Chung, M. F.; Liu, H. Y.; Lin, K. J.; Chia, W. T.; Sung, H. W. A pH-responsive carrier system that generates NO bubbles to trigger drug release and reverse P-glycoprotein-mediated multidrug resistance. Angew. Chem., Int. Ed. 2015, 54, 9890–9893.

44

Wang, S. J.; Teng, Z. G.; Huang, P.; Liu, D. B.; Liu, Y.; Tian, Y.; Sun, J.; Li, Y. J.; Ju, H. X.; Chen, X. Y. et al. Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars. Small 2015, 11, 1801–1810.

45

Ma, J. L.; Hu, Z. P.; Wang, W.; Wang, X. Y.; Wu, Q.; Yuan, Z. pH-sensitive reversible programmed targeting strategy by the self-assembly/disassembly of gold nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 16767–16777.

46

Wang, W. W.; Cheng, D.; Gong, F. M.; Miao, X. M.; Shuai, X. T. Design of multifunctional micelle for tumor-targeted intracellular drug release and fluorescent imaging. Adv. Mater. 2012, 24, 115–120.

47

Gao, M.; Fan, F.; Li, D. D.; Yu, Y.; Mao, K. R.; Sun, T. M.; Qian, H. S.; Tao, W.; Yang, X. Z. Tumor acidity-activatable TAT targeted nanomedicine for enlarged fluorescence/ magnetic resonance imaging-guided photodynamic therapy. Biomaterials 2017, 133, 165–175.

48

Wang, L.; Jia, X. H.; Liu, X. H.; Yuan, Z.; Huang, J. X. Synthesis and characterization of a functionalized amphiphilic diblock copolymer: MePEG-b-poly(DL-lactide-co-RS-β-malic acid). Coll. Polym. Sci. 2006, 285, 273–281.

49

Roy, A.; Zhao, Y. C.; Yang, Y.; Szeitz, A.; Klassen, T.; Li, S. D. Selective targeting and therapy of metastatic and multidrug resistant tumors using a long circulating podophyllotoxin nanoparticle. Biomaterials 2017, 137, 11–22.

50

Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21.

51

Zhang, X. J.; Chen, D. W.; Ba, S.; Zhu, J.; Zhang, J.; Hong, W.; Zhao, X. L.; Hu, H. Y.; Qiao, M. X. Poly(L-histidine) based triblock copolymers: pH induced reassembly of copolymer micelles and mechanism underlying endolysosomal escape for intracellular delivery. Biomacromolecules 2014, 15, 4032–4045.

52

Varkouhi, A. K.; Scholte, M.; Storm, G.; Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Control. Release 2011, 151, 220–228.

File
12274_2018_2014_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 September 2017
Revised: 22 January 2018
Accepted: 31 January 2018
Published: 14 February 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51433004 and 51773096), Natural Science Foundation of Tianjin (No. 17JCZDJC3 3500), PCSIRT (No. IRT1257). We also appreciate Prof. Deling Kong at Nankai University for help with the cellular experiments and Prof. Qiang Wu at Nankai University for help with the characterization of materials.

Return