Journal Home > Volume 11 , Issue 8

Development of "green" multi-functional air filters with features such as excellent filtration efficiency, eco-friendliness, and environmental stability are critically required to address the increasing concerns of polluted air. Natural proteins, such as soy protein and gelatin, are attractive candidates as multi-functional air-filtration materials owing to the rich functional groups; however, these bio-materials are vulnerable to moisture, which limits their broad application in practice. In this work, a hydrophobic protein of zein derived from abundant corn is modified for the first time to produce high-performance nanofilters via electrospinning. The zein nanofabrics are fabricated with the aid of a non-toxic solvent and co-electrospinning agent, poly(ethylene oxide). The results reveal that the zein-based nanofabrics show high efficiency for the simultaneous removal of particulate matters of different sizes ranging from 0.1 to 10 μm (> 99.5%) and certain gaseous toxic chemicals (> 70%). In addition, the zein nanofabrics show excellent moisture-resistance and good adhesion to the cellulose paper towel used as the air-filter substrate. This study demonstrates that nanofabrics based on hydrophobic natural proteins such as zein are promising materials for developing multi-functional "green" air filters.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Natural polypeptides treat pollution complex: Moisture-resistant multi-functional protein nanofabrics for sustainable air filtration

Show Author's information Huafeng Tian1Xuewei Fu2Min Zheng2Yu Wang2( )Yichao Li3Aimin Xiang1Wei-Hong Zhong2( )
School of Material and Mechanical EngineeringBeijing Technology and Business UniversityBeijing100048China
School of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
School of Aerospace EngineeringHuazhong University of Science and TechnologyWuhan430074China

Abstract

Development of "green" multi-functional air filters with features such as excellent filtration efficiency, eco-friendliness, and environmental stability are critically required to address the increasing concerns of polluted air. Natural proteins, such as soy protein and gelatin, are attractive candidates as multi-functional air-filtration materials owing to the rich functional groups; however, these bio-materials are vulnerable to moisture, which limits their broad application in practice. In this work, a hydrophobic protein of zein derived from abundant corn is modified for the first time to produce high-performance nanofilters via electrospinning. The zein nanofabrics are fabricated with the aid of a non-toxic solvent and co-electrospinning agent, poly(ethylene oxide). The results reveal that the zein-based nanofabrics show high efficiency for the simultaneous removal of particulate matters of different sizes ranging from 0.1 to 10 μm (> 99.5%) and certain gaseous toxic chemicals (> 70%). In addition, the zein nanofabrics show excellent moisture-resistance and good adhesion to the cellulose paper towel used as the air-filter substrate. This study demonstrates that nanofabrics based on hydrophobic natural proteins such as zein are promising materials for developing multi-functional "green" air filters.

Keywords: zein nanofabric, multi-functional air-filtration, water-resistant, protein air-filter

References(40)

1

Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N.; Li, W. Y.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015, 6, 6205.

2

Zhang, R. F.; Liu, C.; Hsu, P. C.; Zhang, C. F.; Liu, N.; Zhang, J. S.; Lee, H. R.; Lu, Y. Y.; Qiu, Y. C.; Chu, S. et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 2016, 16, 3642–3649.

3

Liu, X. B.; Souzandeh, H.; Zheng, Y. D.; Xie, Y. J.; Zhong, W. H.; Wang, C. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Compos. Sci. Technol. 2017, 138, 124–133.

4

Zhou, Z.; Dionisio, K. L.; Verissimo, T. G.; Kerr, A. S.; Coull, B.; Arku, R. E.; Koutrakis, P.; Spengler, J. D.; Hughes, A. F.; Vallarino, J. et al. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana. Environ. Res. Lett. 2013, 8, 044025.

5

Huang, J. N.; Cao, Y. H.; Shao, J.; Peng, X. F.; Guo, Z. H. Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: Morphology dependence of fibrillar vs. particulate structures. Ind. Eng. Chem. Res. 2017, 56, 10689–10701.

6

Wang, C. S.; Otani, Y. Removal of nanoparticles from gas streams by fibrous filters: A review. Ind. Eng. Chem. Res. 2013, 52, 5–17.

7

Jung, J. H.; Hwang, G. B.; Park, S. Y.; Lee, J. E.; Nho, C. W.; Lee, B. U.; Bae, G. N. Antimicrobial air filtration using airborne Sophora Flavescens natural-product nanoparticles. Aerosol Sci. Technol. 2011, 45, 1510–1518.

8

Li, P.; Wang, C. Y.; Zhang, Y. Y.; Wei, F. Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes. Small 2014, 10, 4543–4561.

9

Xiao, Z. G.; Li, Y. H.; Wu, X. R.; Qi, G. Y.; Li, N. B.; Zhang, K.; Wang, D. H.; Sun, X. S. Utilization of sorghum lignin to improve adhesion strength of soy protein adhesives on wood veneer. Ind. Crop. Prod. 2013, 50, 501–509.

10

Souzandeh, H.; Wang, Y.; Zhong, W. H. "Green" nano-filters: Fine nanofibers of natural protein for high efficiency filtration of particulate pollutants and toxic gases. RSC Adv. 2016, 6, 105948–105956.

11

Wang, C. Y.; Wu, S. Y.; Jian, M. Q.; Xie, J. R.; Xu, L. P.; Yang, X. D.; Zheng, Q. S.; Zhang, Y. Y. Silk nanofibers as high efficient and lightweight air filter. Nano Res. 2016, 9, 2590–2597.

12

Cheng, X. Q.; Wang, Z. X.; Jiang, X.; Li, T. X.; Lau, C. H.; Guo, Z. H.; Ma, J.; Shao, L. Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Prog. Mater. Sci. 2018, 92, 258–283.

13

Fang, Q.; Zhu, M.; Yu, S. R.; Sui, G.; Yang, X. P. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials. Mater. Sci. Eng. B 2016, 214, 1–10.

14

Souzandeh, H.; Johnson, K. S.; Wang, Y.; Bhamidipaty, K.; Zhong, W. H. Soy-protein-based nanofabrics for highly efficient and multifunctional air filtration. ACS Appl. Mater. Interfaces 2016, 8, 20023–20031.

15

Liu, D. G.; Chang, P. R.; Chen, M. D.; Wu, Q. L. Chitosan colloidal suspension composed of mechanically disassembled nanofibers. J. Colloid Interface Sci. 2011, 354, 6371oll.

16

Zhang, L.; Yu, W.; Han, C.; Guo, J.; Zhang, Q. H.; Xie, H. Y.; Shao, Q.; Sun, Z. G.; Guo, Z. H. Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 2017, 164, H651–H656.

17

Zhang, L.; Qin, M. K.; Yu, W.; Zhang, Q. H.; Xie, H. Y.; Sun, Z. G.; Shao, Q.; Guo, X. K.; Hao, L. H.; Zheng, Y. J. et al. Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J. Electrochem. Soc. 2017, 164, H1086–H1090.

18

Song, W. G.; Liu, D. G.; Prempeh, N.; Song, R. J. Fiber alignment and liquid crystal orientation of cellulose nanocrystals in the electrospun nanofibrous mats. Biomacromolecules 2017, 18, 3273–3279.

19

Tian, H. F.; Xu, G. Z.; Yang, B.; Guo, G. P. Microstructure and mechanical properties of soy protein/agar blend films: Effect of composition and processing methods. J. Food Eng. 2011, 107, 21–26.

20

Guo, G. P.; Zhang, C.; Du, Z. J.; Zou, W.; Tian, H. F.; Xiang, A. M.; Li, H. Q. Structure and property of biodegradable soy protein isolate/PBAT blends. Ind. Crop. Prod. 2015, 74, 731–736.

21

Souzandeh, H.; Molki, B.; Zheng, M.; Beyenal, H.; Scudiero, L.; Wang, Y.; Zhong, W. H. Cross-linked protein nanofilter with antibacterial properties for multifunctional air filtration. ACS Appl. Mater. Interfaces 2017, 9, 22846–22855.

22

Wongsasulak, S.; Tongsin, P.; Intasanta, N.; Yoovidhya, T. Effect of glycerol on solution properties governing morphology, glass transition temperature, and tensile properties of electrospun zein film. J. Appl. Polym. Sci. 2010, 118, 910–919.

23

Shukla, R.; Cheryan, M. Zein: The industrial protein from corn. Ind. Crop. Prod. 2001, 13, 171–192.

24

Park, J. H.; Park, S. M.; Kim, Y. H.; Oh, W.; Lee, G. W.; Karim, M. R.; Park, J. H.; Yeum, J. H. Effect of montmorillonite on wettability and microstructure properties of zein/montmorillonite nanocomposite nanofiber mats. J. Compos. Mater. 2013, 47, 251–257.

25

Lai, H. M.; Geil, P. H.; Padua, G. W. X-ray diffraction characterization of the structure of zein-oleic acid films. J. Appl. Polym. Sci. 1999, 71, 1267–1281.

DOI
26

Wang, C.; Wu, Y. C.; Li, Y. C.; Shao, Q.; Yan, X. R.; Han, C.; Wang, Z.; Liu, Z.; Guo, Z. H. Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polym. Adv. Technol. 2018, 29, 668–676.

27

Li, Y. H.; Zhou, B.; Zheng, G. Q.; Liu, X. H.; Li, T. X.; Yan, C.; Cheng, C. B.; Dai, K.; Liu, C. T.; Shen, C. Y. et al. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C 2018, 6, 2258–2269.

28

Li, Y. C.; Wu, X. L.; Song, J. F.; Li, J. F.; Shao, Q.; Cao, N.; Lu, N.; Guo, Z. H. Reparation of recycled acrylonitrile-butadiene-styrene by pyromellitic dianhydride: Reparation performance evaluation and property analysis. Polymer 2017, 124, 41–47.

29

Ma, Y. L.; Lv, L.; Guo, Y. R.; Fu, Y. J.; Shao, Q.; Wu, T. T.; Guo, S. J.; Sun, K.; Guo, X. K.; Wujcik, E. K. et al. Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb(Ⅱ) ions. Polymer 2017, 128, 12–23.

30

Sun, K.; Xie, P. T.; Wang, Z. Y.; Su, T. M.; Shao, Q.; Ryu, J. E.; Zhang, X. H.; Guo, J.; Shankar, A.; Li, J. F. et al. Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 2017, 125, 50–57.

31

Wang, C. F.; Zhao, M.; Li, J.; Yu, J. L.; Sun, S. F.; Ge, S. S.; Guo, X. K.; Xie, F.; Jiang, B.; Wujcik, E. K. et al. Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 2017, 131, 263–271.

32

Wu, Z. J.; Gao, S.; Chen, L.; Jiang, D. W.; Shao, Q.; Zhang, B.; Zhai, Z. H.; Wang, C.; Zhao, M.; Ma, Y. Y. et al. Electrically insulated epoxy nanocomposites reinforced with synergistic core-shell SiO2@MWCNTs and montmorillonite bifillers. Macromol. Chem. Phys. 2017, 218, 1700357.

33

Zhang, K.; Li, G. H.; Feng, L. M.; Wang, N.; Guo, J.; Sun, K.; Yu, K. X.; Zeng, J. B.; Li, T. X.; Guo, Z. H. et al. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J. Mater. Chem. C 2017, 5, 9359–9369.

34

Wang, X. D.; Liu, X. H.; Yuan, H. Y.; Liu, H.; Liu, C. T.; Li, T. X.; Yan, C.; Yan, X. R.; Shen, C. Y.; Guo, Z. H. Non-covalently functionalized graphene strengthened poly(vinyl alcohol). Mater. Des. 2018, 139, 372–379.

35

Souzandeh, H.; Scudiero, L.; Wang, Y.; Zhong, W. H. A Disposable multi-Functional air filter: Paper towel/protein nanofibers with gradient porous structures for capturing pollutants of broad species and sizes. ACS Sustain. Chem. Eng. 2017, 5, 6209–6217.

36

Koombhongse, S.; Liu, W. X.; Reneker, D. H. Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci. Pt. B-Polym. Phys. 2001, 39, 2598–2606.

37

Yao, C.; Li, X. S.; Song, T. Y. Electrospinning and crosslinking of zein nanofiber mats. J. Appl. Polym. Sci. 2007, 103, 380–385.

38

Miyoshi, T.; Toyohara, K.; Minematsu, H. Preparation of ultrafine fibrous zein membranes via electrospinning. Polym. Int. 2005, 54, 1187–1190.

39

Fu, X. W.; Jewel, Y.; Wang, Y.; Liu, J.; Zhong, W. H. Decoupled ion transport in a protein-based solid ion conductor. J. Phys. Chem. Lett. 2016, 7, 4304–4310.

40

Chen, C. Y. Filtration of aerosols by fibrous media. Chem. Rev. 1955, 55, 595–623.

File
12274_2018_2013_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 December 2017
Revised: 17 January 2018
Accepted: 30 January 2018
Published: 09 March 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51373004) and Beijing Top Young Innovative Talents Program (No. 2014000026833ZK13). This work was also partly supported by USDA NIFA 2015-67021-22911.

Return