Journal Home > Volume 11 , Issue 8

Composites containing biological materials with nanostructured architecture have become of great interest in modern materials science, yielding both interesting chemical properties and inspiration for biomimetic research. Herein, we describe the preparation of a novel 3D nanostructured MnO2-based composite developed using a carbonized proteinaceous spongin template by an extreme biomimetics approach. The thermal stability of the spongin-based scaffold facilitated the formation of both carbonized material (at 650 ℃ with exclusion of oxygen) and manganese oxide with a defined nanoscale structure under 150 ℃. Remarkably, the unique network of spongin fibers was maintained after pyrolysis and hydrothermal processing, yielding a novel porous support. The MnO2-spongin composite shows a bimodal pore distribution, with macropores originating from the spongin network and mesopores from the nanostructured oxidic coating. Interestingly, the composites also showed improved electrochemical properties compared to those of MnO2. Voltammetry cycling demonstrated the good stability of the material over more than 3, 000 charging/discharging cycles. Additionally, electrochemical impedance spectroscopy revealed lower charge transfer resistance in the prepared materials. We demonstrate the potential of extreme biomimetics for developing a new generation of nanostructured materials with 3D centimeter-scale architecture for the storage and conversion of energy generated from renewable natural sources.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Extreme biomimetics: A carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide(IV) and its electrochemical applications

Show Author's information Tomasz Szatkowski1Kacper Kopczyński2Mykhailo Motylenko3Horst Borrmann4Beata Mania2Małgorzata Graś2Grzegorz Lota2Vasilii V. Bazhenov5,6David Rafaja3Friedrich Roth5Juliane Weise5Enrico Langer7Marcin Wysokowski1Sonia Żółtowska-Aksamitowska1Iaroslav Petrenko5Serguei L. Molodtsov5,6,8Jana Hubálková9Christos G. Aneziris9Yvonne Joseph10Allison L. Stelling11Hermann Ehrlich5( )Teofil Jesionowski1( )
Institute of Chemical Technology and EngineeringFaculty of Chemical TechnologyPoznan University of TechnologyPoznan60965Poland
Institute of Chemistry and Technical ElectrochemistryPoznan University of TechnologyPoznan60965Poland
Institute of Materials ScienceTU Bergakademie FreibergFreiberg09599Germany
Max Planck Institute for Chemical Physics of SolidsDresden01187Germany
Institute of Experimental PhysicsTU Bergakademie FreibergFreiberg09599Germany
European X-Ray Free-Electron Laser Facility (XFEL) GmbHSchenefeld22869Germany
Institute of Semiconductors and MicrosystemsPolymere MikrosystemeTU DresdenDresden01062Germany
Saint-Petersburg National Research University of Information TechnologiesMechanics and OpticsITMO UniversitySt. Petersburg197101Russia
Institute of CeramicGlass and Constructions MaterialsTU BergakademieFreiberg09599Germany
Institute of Electronics and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
Department of BiochemistryDuke University Medical SchoolDurhamNorth Carolina27708USA

Abstract

Composites containing biological materials with nanostructured architecture have become of great interest in modern materials science, yielding both interesting chemical properties and inspiration for biomimetic research. Herein, we describe the preparation of a novel 3D nanostructured MnO2-based composite developed using a carbonized proteinaceous spongin template by an extreme biomimetics approach. The thermal stability of the spongin-based scaffold facilitated the formation of both carbonized material (at 650 ℃ with exclusion of oxygen) and manganese oxide with a defined nanoscale structure under 150 ℃. Remarkably, the unique network of spongin fibers was maintained after pyrolysis and hydrothermal processing, yielding a novel porous support. The MnO2-spongin composite shows a bimodal pore distribution, with macropores originating from the spongin network and mesopores from the nanostructured oxidic coating. Interestingly, the composites also showed improved electrochemical properties compared to those of MnO2. Voltammetry cycling demonstrated the good stability of the material over more than 3, 000 charging/discharging cycles. Additionally, electrochemical impedance spectroscopy revealed lower charge transfer resistance in the prepared materials. We demonstrate the potential of extreme biomimetics for developing a new generation of nanostructured materials with 3D centimeter-scale architecture for the storage and conversion of energy generated from renewable natural sources.

Keywords: supercapacitor, manganese oxide, electrochemistry, nanostructured composite, extreme biomimetics, spongin scaffold

References(111)

1

Szatkowski, T.; Siwińska-Stefańska, K.; Wysokowski, M.; Stelling, A. L.; Joseph, Y.; Ehrlich, H.; Jesionowski, T. Immobilization of titanium(IV) oxide onto 3D spongin scaffolds of marine sponge origin according to Extreme Biomimetics principles for removal of C.I. Basic Blue 9. Biomimetics 2017, 2, 4.

2

Wysokowski, M.; Motylenko, M.; Beyer, J.; Makarova, A.; Stöcker, H.; Walter, J.; Galli, R.; Kaiser, S.; Vyalikh, D.; Bazhenov, V. V. et al. Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties. Nano Res. 2015, 8, 2288–2301.

3

Tatur, J.; Hagedoorn, P. L.; Overeijnder, M. L.; Hagen, W. R. A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Extremophiles 2006, 10, 139–148.

4

Sheng, W. Q.; Liu, J.; Liu, S. S.; Lu, Q.; Kaplan, D. L.; Zhu, H. S. One-step synthesis of biocompatible magnetite/silk fibroin core–shell nanoparticles. J. Mater. Chem. B 2014, 2, 7394–7402.

5

Szatkowski, T.; Wysokowski, M.; Lota, G.; Pęziak, D.; Bazhenov, V. V.; Nowaczyk, G.; Walter, J.; Molodtsov, S. L.; Stöcker, H.; Himcinschi, C. et al. Novel nanostructured hematite–spongin composite developed using an extreme biomimetic approach. RSC Adv. 2015, 5, 79031–79040.

6

Pronzato, R. Sponge farming in the Mediterranean Sea: New perspectives. Mem. Queensl. Museum 1999, 44, 485–491.

DOI
7

Garrone, R. Phylogenesis of Connective Tissue: Morphological Aspects and Biosynthesis of Sponge Intercellular Matrix; Basel: New York, 1978.

8

Bergquist, P. R. Sponges; University of California Press: Berkeley, Los Angeles, 1978.

9

Louden, D.; Inderbitzin, S.; Peng, Z.; de Nys, R. Development of a new protocol for testing bath sponge quality. Aquaculture 2007, 271, 275–285.

10

Szatkowski, T.; Jesionowski, T. Hydrothermal synthesis of spongin-based materials. In Extreme Biomimetics; Ehrlich, H., Ed.; Springer International Publishing: Cham, 2017; pp 251–274.

DOI
11

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

12

Inagaki, M.; Yang, Y.; Kang, F. Y. Carbon nanofibers prepared via electrospinning. Adv. Mater. 2012, 24, 2547–2566.

13

Li, Q.; Mahmood, N.; Zhu, J. H.; Hou, Y. L.; Sun, S. H. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 2014, 9, 668–683.

14

Wu, X. L.; Wen, T.; Guo, H. L.; Yang, S. B.; Wang, X. K.; Xu, A. W. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 2013, 7, 3589–3597.

15

Singhal, R.; Chung, S. H.; Manthiram, A.; Kalra, V. A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 4530–4538.

16

Jeon, J. W.; Sharma, R.; Meduri, P.; Arey, B. W.; Schaef, H. T.; Lutkenhaus, J. L.; Lemmon, J. P.; Thallapally, P. K.; Nandasiri, M. I.; McGrail, B. P. et al. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 7214–7222.

17

Wissler, M. Graphite and carbon powders for electrochemical applications. J. Power Sources 2006, 156, 142–150.

18

Raymundo-Piñero, E.; Leroux, F.; Béguin, F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 2006, 18, 1877–1882.

19

Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon; Elsevier Science: Amsterdam, 2006.

20

Ishimaru, K.; Hata, T.; Bronsveld, P.; Meier, D.; Imamura, Y. Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin. J. Mater. Sci. 2007, 42, 122–129.

21

Deng, L. B.; Young, R. J.; Kinloch, I. A.; Abdelkader, A. M.; Holmes, S. M.; De Haro-Del Rio, D. A.; Eichhorn, S. J. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl. Mater. Interfaces 2013, 5, 9983–9990.

22

Cho, S. Y.; Yun, Y. S.; Jin, H. J. Carbon nanofibers prepared by the carbonization of self-assembled cellulose nanocrystals. Macromol. Res. 2014, 22, 753–756.

23

Cho, H. E.; Seo, S. J.; Khil, M. S.; Kim, H. Preparation of carbon nanoweb from cellulose nanowhisker. Fibers Polym. 2015, 16, 271–275.

24

Li, Y. M.; Cui, D. X.; Tong, Y. J.; Xu, L. H. Study on structure and thermal stability properties of lignin during thermostabilization and carbonization. Int. J. Biol. Macromol. 2013, 62, 663–669.

25

Foston, M.; Nunnery, G. A.; Meng, X. Z.; Sun, Q. N.; Baker, F. S.; Ragauskas, A. NMR a critical tool to study the production of carbon fiber from lignin. Carbon 2013, 52, 65–73.

26

Sebbahi, S.; Ahmido, A.; Kifani-Sahban, F.; El Hajjaji, S.; Zoulalian, A. Preoxidation and activation of the lignin char: Carbonization and oxidation procedures. J. Eng. 2014, 2014, 972897.

27

Cao, J.; Xiao, G.; Xu, X.; Shen, D. K.; Jin, B. S. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Process. Technol. 2013, 106, 41–47.

28

Snowdon, M. R.; Mohanty, A. K.; Misra, M. A study of carbonized lignin as an alternative to carbon black. ACS Sustain. Chem. Eng. 2014, 2, 1257–1263.

29

Nogi, M.; Kurosaki, F.; Yano, H.; Takano, M. Preparation of nanofibrillar carbon from chitin nanofibers. Carbohydr. Polym. 2010, 81, 919–924.

30

Nguyen, T. D.; Shopsowitz, K. E.; MacLachlan, M. J. Mesoporous nitrogen-doped carbon from nanocrystalline chitin assemblies. J. Mater. Chem. A 2014, 2, 5915–5921.

31

Gao, Y. J.; Chen, X.; Zhang, J. G.; Yan, N. Chitin-derived mesoporous, nitrogen-containing carbon for heavy-metal removal and styrene epoxidation. ChemPlusChem 2015, 80, 1556–1564.

32

Nata, I. F.; Wang, S. S. S.; Wu, T. M.; Lee, C. K. Carbonaceous hydrogels based on hydrothermal carbonization of glucose with chitin nanofibers. Soft Matter 2012, 8 (13), 3522–3525.

33

Qian, W. J.; Sun, F. X.; Xu, Y. H.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2014, 7, 379–386.

34

Belarmino, D. D.; Ladchumananandasivam, R.; Belarmino, L. D.; de M. Pimentel, J. R.; da Rocha, B. G.; Galvão, A. O.; de Andrade, S. M. B. Physical and morphological structure of chicken feathers (keratin biofiber) in natural, chemically and thermally modified forms. Mater. Sci. Appl. 2012, 3, 887–893.

35

Chen, W.; Liu, X.; He, R. L.; Lin, T.; Zeng, Q. F.; Wang, X. G. Activated carbon powders from wool fibers. Powder Technol. 2013, 234, 76–83.

36

Ogata, F.; Tominaga, H.; Kangawa, M.; Inoue1, K.; Kawasaki, N. Adsorption capacity of Cu(Ⅱ) and Pb(Ⅱ) onto carbon fiber produced from wool. J. Oleo Sci. 2012, 61, 149–154.

37

Cho, S. Y.; Yun, Y. S.; Lee, S.; Jang, D.; Park, K. Y.; Kim, J. K.; Kim, B. H.; Kang, K.; Kaplan, D. L.; Jin, H. J. Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 2015, 6, 7145.

38

Zhang, J. W.; Cai, Y. R.; Zhong, Q. W.; Lai, D. Z.; Yao, J. M. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium–sulfur batteries. Nanoscale 2015, 7, 17791–17797.

39

Lee, Y. H.; Lee, Y. F.; Chang, K. H.; Hu, C. C. Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochem. Commun. 2011, 13, 50–53.

40

Lee, Y. H.; Li, F.; Chang, K. H.; Hu, C. C.; Ohsaka, T. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2. Appl. Catal. B Environ. 2012, 126, 208–214.

41

Deng, D. H.; Liao, X. P.; Shi, B. Synthesis of porous carbon fibers from collagen fiber. ChemSusChem 2008, 1, 298–301.

42

Park, M.; Ryu, J.; Kim, Y.; Cho, J. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy Environ. Sci. 2014, 7, 3727–3735.

43

Alatalo, S. M.; Qiu, K. P.; Preuss, K.; Marinovic, A.; Sevilla, M.; Sillanpää, M.; Guo, X.; Titirici, M. M. Soy protein directed hydrothermal synthesis of porous carbon aerogels for electrocatalytic oxygen reduction. Carbon 2016, 96, 622–630.

44

Ji, H. X.; Zhao, X.; Qiao, Z. H.; Jung, J.; Zhu, Y. W.; Lu, Y. L.; Zhang, L. L.; MacDonald, A. H.; Ruoff, R. S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317.

45

Griffin, J. M.; Forse, A. C.; Tsai, W. Y.; Taberna, P. L.; Simon, P.; Grey, C. P. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 2015, 14, 812–819.

46

Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785.

47

Subramanian, V.; Zhu, H. W.; Vajtai, R.; Ajayan, P. M.; Wei, B. Q. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207– 20214.

48

Al-Enizi, A. M.; Elzatahry, A. A.; Abdullah, A. M.; AlMaadeed, M. A.; Wang, J. X.; Zhao, D. Y.; Al-Deyab, S. Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites. Carbon 2014, 71, 276–283.

49

Luan, F.; Wang, G. M.; Ling, Y. C.; Lu, X. H.; Wang, H. Y.; Tong, Y. X.; Liu, X. X.; Li, Y. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 2013, 5, 7984–7990.

50

Gao, F.; Wei, Q.; Yang, J. X.; Bi, H.; Wang, M. T. Synthesis of graphene/nickel oxide composite with improved electrochemical performance in capacitors. Ionics 2013, 19, 1883–1889.

51

Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 2012, 12, 2559–2567.

52

Wang, X.; Han, X. D.; Lim, M. F.; Singh, N.; Gan, C. L.; Jan, M.; Lee, P. S. Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J. Phys. Chem. C 2012, 116, 12448–12454.

53

Chang, S. K.; Zainal, Z.; Tan, K. B.; Yusof, N. A.; Yusoff, W. M. D. W.; Prabaharan, S. R. S. Nickel–cobalt oxide/activated carbon composite electrodes for electrochemical capacitors. Curr. Appl. Phys. 2012, 12, 1421–1428.

54

Hsieh, C. T.; Lee, W. Y.; Lee, C. E.; Teng, H. Electrochemical capacitors fabricated with tin oxide/graphene oxide nanocomposites. J. Phys. Chem. C 2014, 118, 15146–15153.

55

Puppa, L. D.; Komárek, M.; Bordas, F.; Bollinger, J. C.; Joussein, E. Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J. Colloid Interface Sci. 2013, 399, 99–106.

56

Duan, L. A.; Sun, B. Z.; Wei, M. Y.; Luo, S. L.; Pan, F.; Xu, A. H.; Li, X. X. Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation. J. Hazard. Mater. 2015, 285, 356–365.

57

Kuo, C. H.; Mosa, I. M.; Poyraz, A. S.; Biswas, S.; El-Sawy, A. M.; Song, W. Q.; Luo, Z.; Chen, S. Y.; Rusling, J. F.; He, J. et al. Robust mesoporous manganese oxide catalysts for water oxidation. ACS Catal. 2015, 5, 1693–1699.

58

Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.

59

Liu, X. D.; Chen, C. Z.; Zhao, Y. Y.; Jia, B. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J. Nanomater. 2013, 2013, 736375.

60

Truong, T. T.; Liu, Y. Z.; Ren, Y.; Trahey, L.; Sun, Y. G. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium–air batteries. ACS Nano 2012, 6, 8067–8077.

61

Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9, 1002–1006.

62

Xia, H.; Wang, Y.; Lin, J. Y.; Lu, L. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Res. Lett. 2012, 7, 33.

63

Ahmed, K. A. M.; Huang, K. X. Synthesis, characterization and catalytic activity of birnessite type potassium manganese oxide nanotubes and nanorods. Mater. Chem. Phys. 2012, 133, 605–610.

64

Yu, M. H.; Zhai, T.; Lu, X. H.; Chen, X. J.; Xie, S. L.; Li, W.; Liang, C. L.; Zhao, W. X.; Zhang, L. P.; Tong, Y. X. Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. J. Power Sources 2013, 239, 64–71.

65

Yousefi, T.; Davarkhah, R.; Golikand, A. N.; Mashhadizadeh, M. H. Synthesis, characterization, and supercapacitor studies of manganese (IV) oxide nanowires. Mater. Sci. Semicond. Process. 2013, 16, 868–876.

66

Liu, Z. P.; Ma, R. Z.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis and delamination of layered manganese oxide nanobelts. Chem. Mater. 2007, 19, 6504–6512.

67

Zhao, G. X.; Li, J. X.; Jiang, L.; Dong, H. L.; Wang, X. K.; Hu, W. P. Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem. Sci. 2012, 3, 433–437.

68

Inamdar, A. I.; Jo, Y.; Kim, J.; Han, J.; Pawar, S. M.; Kalubarme, R. S.; Park, C. J.; Hong, J. P.; Park, Y. S.; Jung, W. et al. Synthesis and enhanced electrochemical supercapacitive properties of manganese oxide nanoflake electrodes. Energy 2015, 83, 532–538.

69

Dang, L. Y.; Wei, C. Z.; Ma, H. F.; Lu, Q. Y.; Gao, F. Three-dimensional honeycomb-like networks of birnessite manganese oxide assembled by ultrathin two-dimensional nanosheets with enhanced Li-ion battery performances. Nanoscale 2015, 7, 8101–8109.

70

Ma, J. P.; Cheng, Q. L.; Pavlinek, V.; Saha, P.; Li, C. Z. Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance. New J. Chem. 2013, 37, 722–728.

71

Li, Q.; Sun, X.; Lozano, K.; Mao, Y. B. Asymmetric supercapacitors with dominant pseudocapacitance based on manganese oxide nanoflowers in a neutral aqueous electrolyte. RSC Adv. 2013, 3, 24886–24890.

72

Zhang, L. L.; Wei, T. X.; Wang, W. J.; Zhao, X. S. Manganese oxide-carbon composite as supercapacitor electrode materials. Microporous Mesoporous Mater. 2009, 123, 260–267.

73

Ma, S. B.; Ahn, K. Y.; Lee, E. S.; Oh, K. H.; Kim, K. B. Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon 2007, 45, 375–382.

74

Lee, H. M.; Jeong, G. H.; Kang, D. W.; Kim, S. W.; Kim, C. K. Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors. J. Power Sources 2015, 281, 44–48.

75

Zhao, X.; Zhang, L. L.; Murali, S.; Stoller, M. D.; Zhang, Q. H.; Zhu, Y. W.; Ruoff, R. S. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 2012, 6, 5404–5412.

76

Ma, S. B.; Kim, K. B. Manganese oxide/carbon nanotube nanocomposites for electrochemical energy storage applications. In Nanotechnology in Advanced Electrochemical Power sources; Prabaharan, S. R. S., Michael, M. S., Eds.; CRC Press: Boca Raton, Florida, 2013; pp 281–316.

DOI
77

Xue, T.; Xu, C. L.; Zhao, D. D.; Li, X. H.; Li, H. L. Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates. J. Power Sources 2007, 164, 953–958.

78

Wang, N.; Gao, Y.; Gong, J.; Ma, X. Y.; Zhang, X. L.; Guo, Y. H.; Qu, L. Y. Synthesis of manganese oxide hollow urchins with a reactive template of carbon spheres. Eur. J. Inorg. Chem. 2008, 2008, 3827–3832.

79

Giovanoli, R.; Stähli, E.; Feitknecht, W. Über oxidhydroxide des vierwertigen mangans mit schichtengitter. 1. Mitteilung. natriummangan (Ⅱ, Ⅲ)manganat(IV). Helv. Chim. Acta 1970, 53, 209–220.

80

Kurata, H.; Colliex, C. Electron-energy-loss core-edge structures in manganese oxides. Phys. Rev. B Condens Matter. 1993, 48, 2102–2108.

81

Laffont, L.; Gibot, P. High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn3O4 nanoparticles. Mater. Charact. 2010, 61, 1268–1273.

82

Estradé, S.; Yedra, L.; López-Ortega, A.; Estrader, M.; Salazar-Alvarez, G.; Baró, M. D.; Nogués, J.; Peiró, F. Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. Micron 2012, 43, 30–36.

83

Paterson, J. H.; Krivanek, O. L. Elnes of 3D transition-metal oxides: Ⅱ. Variations with oxidation state and crystal structure. Ultramicroscopy 1990, 32, 319–325.

84

Rask, J. H.; Miner, B. A.; Buseck, P. R. Determination of manganese oxidation states in solids by electron energy-loss spectroscopy. Ultramicroscopy 1987, 21, 321–326.

85

Manoubi, T.; Tencé, M.; Walls, M. G.; Colliex, C. Curve fitting methods for quantitative analysis in electron energy loss spectroscopy. Microsc. Microanal. Microstruct. 1990, 1, 23–39.

86

Oku, M.; Hirokawa, K.; Ikeda, S. X-ray photoelectron spectroscopy of manganese—oxygen systems. J. Electron Spectros. Relat. Phenomena 1975, 7, 465–473.

87

Nesbitt, H. W.; Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 1998, 83, 305–315.

88

Liang, Y. R.; Wu, D. C.; Fu, R. W. Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Sci. Rep. 2013, 3, 1119.

89

Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X. H.; Xu, Z. W.; Wang, H. L.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2012, 2, 431–437.

90

Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S. J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S. et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 2013, 25, 1993–1998.

91

Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.

92

Shukla, A. K.; Krüger, P.; Dhaka, R. S.; Sayago, D. I.; Horn, K.; Barman, S. R. Understanding the 2p core-level spectra of manganese: Photoelectron spectroscopy experiments and Anderson impurity model calculations. Phys. Rev. B 2007, 75, 235419.

93

Seyama, H.; Tani, Y.; Miyata, N.; Soma, M.; Iwahori, K. Characterization of pebble surfaces coated with biogenic manganese oxides by SIMS, XPS and SEM. Appl. Surf. Sci. 2008, 255, 1509–1511.

94

Molenda, J.; Marzec, J.; Świerczek, K.; Ojczyk, W.; Ziemnicki, M.; Molenda, M.; Drozdek, M.; Dziembaj, R. The effect of 3D substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel. Solid State Ionics 2004, 171, 215–227.

95

Jiang, J. H.; Kucernak, A. Electrochemical supercapacitor material based on manganese oxide: Preparation and characterization. Electrochim. Acta 2002, 47, 2381–2386.

96

Gardner, S. D.; Singamsetty, C. S. K.; Booth, G. L.; He, G. R.; Pittman Jr, C. U. Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 1995, 33, 587–595.

97

Yang, D. X.; Velamakannia, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

98

Scalese, S.; Mirabella, S.; Terrasi, A. XPS and RBS investigations of Si-Er-O interactions on a Si(100)-2×1 surface. Appl. Surf. Sci. 2003, 220, 231–237.

99

Abbas, Q.; Ratajczak, P.; Babuchowska, P.; Le Comte, A.; Bélanger, D.; Brousse, T.; Béguin, F. Strategies to improve the performance of carbon/carbon capacitors in salt aqueous electrolytes. J. Electrochem. Soc. 2015, 162, A5148–A5157.

100

Winter, M.; Brodd R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4240.

101

Acznik, I.; Lota, K.; Sierczynska, A.; Lota, G. Carbon-supported manganese dioxide as electrode material for asymmetric electrochemical capacitors. Int. J. Electrochem. Sci. 2014, 9, 2518–2534.

102

Malak-Polaczyk, A.; Matei-Ghimbeu, C.; Vix-Guterl, C.; Frackowiak, E. Carbon/λ-MnO2 composites for supercapacitor electrodes. J. Solid State Chem. 2010, 183, 969–974.

103

Patel, M. N.; Wang, X. Q.; Wilson, B.; Ferrer, D. A.; Dai, S.; Stevenson, K. J.; Johnston, K. P. Hybrid MnO2–disordered mesoporous carbon nanocomposites: Synthesis and characterization as electrochemical pseudocapacitor electrodes. J. Mater. Chem. 2010, 20, 390–398.

104

Chen, Q.; Meng, Y. N.; Hu, C. G.; Zhao, Y.; Shao, H. B.; Chen, N.; Qu, L. T. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 2014, 247, 32–39.

105

Gambou-Bosca, A.; Bélanger, D. Effect of the formulation of the electrode on the pore texture and electrochemical performance of the manganese dioxide-based electrode for application in a hybrid electrochemical capacitor. J. Mater. Chem. A 2014, 2, 6463–6473.

106

Deng, L. J.; Hao, Z. P.; Wang, J. F.; Zhu, G.; Kang, L. P.; Liu, Z. H.; Yang, Z. P.; Wang, Z. L. Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta 2013, 89, 191–198.

107

Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498.

108

Wang, T.; Zhu, J.; Chen, Y.; Yang, H. G.; Qin, Y.; Li, F.; Cheng, Q. F.; Yu, X. Z.; Xu, Z.; Lu, B. A. Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes. J. Mater. Chem. A 2017, 5, 4809–4817.

109

Zhu, J.; Xu, Z.; Lu, B. A. Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for highperformance supercapacitor and lithium-ion battery applications. Nano Energy 2014, 7, 114–123.

110

Li, L.; Qin, Z. Y.; Wang, L. F.; Liu, H. J.; Zhu, M. F. Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor. J. Nanoparticle Res. 2010, 12, 2349–2353.

111

Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190.

File
12274_2018_2008_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 November 2017
Revised: 24 January 2018
Accepted: 27 January 2018
Published: 09 March 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the Poznan University of Technology (Poland), Research Grant No. 03/32/DSPB/ 0706/2017 to T. Szatkowski, M. Wysokowski, and T. Jesionowski; the Ministry of Science and Higher Education, Grant No. 03/31/DSBP/0337 to K. Kopczyński, M. Gra? and G. Lota; and the German Research Foundation (DFG) Grant HE 394-3 as well as the BHMZ Erich- Krueger-Foundation to H. Ehrlich. M. Wysokowski is supported by the Foundation for Polish Science (FNP)- START 097.2017.

Return