Journal Home > Volume 11 , Issue 8

The magnetic strength and versatility of heterostructures generated via a simple microemulsion cluster-formation technique is demonstrated. This approach allows optimization of individual component magnetic nanoparticles prior to heterostructuring, expediting the discovery and optimization of hybrid magnetic materials. The efficacy of this method is validated through a magnetic study of nanoparticle clusters combining antiferromagnetic CoO and superparamagnetic CoFe2O4 nanoparticles with tunable particle ratio and size. An enhancement of coercivity compared with pure CoFe2O4 nanoparticles indicates that close interparticle contacts are achieved. Upon annealing, an exchange bias field of 0.32 T was observed—over twice that achieved in any other colloidally-synthesized system. Additionally, the unique microstructure is defined during cluster formation and thus protects magnetic coercivity during the annealing process. Overall, this work demonstrates a general approach for quickly exploring magnetic parameter space, designing interparticle functionality, and working towards the construction of high-value bulk magnets with low materials and processing cost.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Strengthening nanocomposite magnetism through microemulsion synthesis

Show Author's information Yijun Xie1,2Alexandre H. Vincent2Haeun Chang2Jeffrey D. Rinehart1,2( )
Materials Science and Engineering ProgramUniversity of CaliforniaSan Diego9500 Gilman DriveLa JollaCA92093USA
Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego9500 Gilman DriveLa JollaCA92093USA

Abstract

The magnetic strength and versatility of heterostructures generated via a simple microemulsion cluster-formation technique is demonstrated. This approach allows optimization of individual component magnetic nanoparticles prior to heterostructuring, expediting the discovery and optimization of hybrid magnetic materials. The efficacy of this method is validated through a magnetic study of nanoparticle clusters combining antiferromagnetic CoO and superparamagnetic CoFe2O4 nanoparticles with tunable particle ratio and size. An enhancement of coercivity compared with pure CoFe2O4 nanoparticles indicates that close interparticle contacts are achieved. Upon annealing, an exchange bias field of 0.32 T was observed—over twice that achieved in any other colloidally-synthesized system. Additionally, the unique microstructure is defined during cluster formation and thus protects magnetic coercivity during the annealing process. Overall, this work demonstrates a general approach for quickly exploring magnetic parameter space, designing interparticle functionality, and working towards the construction of high-value bulk magnets with low materials and processing cost.

Keywords: nanoparticle cluster, microemulsion, exchange bias, exchange interaction, coercivity

References(49)

1

Brown, D.; Ma, B. -M.; Chen, Z. M. Developments in the processing and properties of NdFeB-type permanent magnets. J. Magn. Magn. Mater. 2002, 248, 432–440.

2

Woodcock, T. G.; Zhang, Y.; Hrkac, G.; Ciuta, G.; Dempsey, N. M.; Schrefl, T.; Gutfleisch, O.; Givord, D. Understanding the microstructure and coercivity of high performance NdFeB-based magnets. Scripta Mater. 2012, 67, 536–541.

3

Fischer, R.; Schrefl, T.; Kronmüller, H.; Fidler, J. Grain-size dependence of remanence and coercive field of isotropic nanocrystalline composite permanent magnets. J. Magn. Magn. Mater. 1996, 153, 35–49.

4

Leighton, C.; Nogués, J.; Jönsson-Åkerman, B. J.; Schuller, I. K. Coercivity enhancement in exchange biased systems driven by interfacial magnetic frustration. Phys. Rev. Lett. 2000, 84, 3466–3469.

5

Estrader, M.; López-Ortega, A.; Estradé, S.; Golosovsky, I. V.; Salazar-Alvarez, G.; Vasilakaki, M.; Trohidou, K. N.; Varela, M.; Stanley, D. C.; Sinko, M. et al. Robust antiferromagnetic coupling in hard-soft bi-magnetic core/ shell nanoparticles. Nat. Commun. 2013, 4, 2960.

6

Goll, D.; Seeger, M.; Kronmüller, H. Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets. J. Magn. Magn. Mater. 1998, 185, 49–60.

7

Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398.

8

Skumryev, V.; Stoyanov, S.; Zhang, Y.; Hadjipanayis, G.; Givord, D.; Nogués, J. Beating the superparamagnetic limit with exchange bias. Nature 2003, 423, 850–853.

9

Nogués, J.; Sort, J.; Langlais, V.; Skumryev, V.; Suriñach, S.; Muñoz, J.; Baró, M. D. Exchange bias in nanostructures. Phys. Rep. 2005, 422, 65–117.

10

Nogués, J.; Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 1999, 192, 203–232.

11

Kremenović, A.; Jančar, B.; Ristić, M.; Vučinić-Vasić, M.; Rogan, J.; Pačevski, A.; Antić, B. Exchange-bias and grainsurface relaxations in nanostructured NiO/Ni induced by a particle size reduction. J. Phys. Chem. C 2012, 116, 4356–4364.

12

Berkowitz, A. E.; Hansen, M. F.; Parker, F. T.; Vecchio, K. S.; Spada, F. E.; Lavernia, E. J.; Rodriguez, R. Amorphous soft magnetic particles produced by spark erosion. J. Magn. Magn. Mater. 2003, 254–255, 1–6.

13

Rama Rao, N. V.; Gopalan, R.; Raja, M. M.; Chandrasekaran, V.; Chakravarty, D.; Sundaresan, R.; Ranganathan, R.; Hono, K. Structural and magnetic studies on spark plasma sintered SmCo5/Fe bulk nanocomposite magnets. J. Magn. Magn. Mater. 2007, 312, 252–257.

14

Balasubramanian, B.; Das, B.; Skomski, R.; Zhang, W. Y.; Sellmyer, D. J. Novel nanostructured rare-earth-free magnetic materials with high energy products. Adv. Mater. 2013, 25, 6090–6093.

15

Mendoza-Suárez, G.; Matutes-Aquino, J. A.; Escalante- García, J. I.; Mancha-Molinar, H.; Ríos-Jara, D.; Johal, K. K. Magnetic properties and microstructure of Ba-ferrite powders prepared by ball milling. J. Magn. Magn. Mater. 2001, 223, 55–62.

16

Masala, O.; Seshadri, R. Spinel ferrite/MnO core/shell nanoparticles: Chemical synthesis of all-oxide exchange biased architectures. J. Am. Chem. Soc. 2005, 127, 9354–9355.

17

Zeng, H.; Sun, S. H.; Li, J.; Wang, Z. L.; Liu, J. P. Tailoring magnetic properties of core∕shell nanoparticles. Appl. Phys. Lett. 2004, 85, 792–794.

18

Wang, L. Y.; Wang, X.; Luo, J.; Wanjala, B. N.; Wang, C. M.; Chernova, N. A.; Engelhard, M. H.; Liu, Y.; Bae, I. -T.; Zhong, C. -J. Core−shell-structured magnetic ternary nanocubes. J. Am. Chem. Soc. 2010, 132, 17686–17689.

19

López-Ortega, A.; Tobia, D.; Winkler, E.; Golosovsky, I. V.; Salazar-Alvarez, G.; Estradé, S.; Estrader, M.; Sort, J.; González, M. A.; Suriñach, S. et al. Size-dependent passivation shell and magnetic properties in antiferromagnetic/ ferrimagnetic core/shell MnO nanoparticles. J. Am. Chem. Soc. 2010, 132, 9398–9407.

20

Lima, E., Jr.; Winkler, E. L.; Tobia, D.; Troiani, H. E.; Zysler, R. D.; Agostinelli, E.; Fiorani, D. Bimagnetic CoO core/CoFe2O4 shell nanoparticles: Synthesis and magnetic properties. Chem. Mater. 2012, 24, 512–516.

21

Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 6650–6653.

22

Qiu, P. H.; Jensen, C.; Charity, N.; Towner, R.; Mao, C. B. Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles. J. Am. Chem. Soc. 2010, 132, 17724–17732.

23

Lu, Z. D.; Ye, M. M.; Li, N.; Zhong, W. W.; Yin, Y. D. Self-assembled TiO2 nanocrystal clusters for selective enrichment of intact phosphorylated proteins. Angew. Chem. , Int. Ed. 2010, 122, 1906–1910.

24

Chen, C.; Nan, C. Y.; Wang, D. S.; Su, Q.; Duan, H. H.; Liu, X. W.; Zhang, L. S.; Chu, D. R.; Song, W. G.; Peng, Q. et al. Mesoporous multicomponent nanocomposite colloidal spheres: Ideal high-temperature stable model catalysts. Angew. Chem., Int. Ed. 2011, 50, 3725–3729.

25

Liu, Y. Y.; Zhang, Y. X.; Ding, H. L.; Xu, S. C.; Li, M.; Kong, F. Y.; Luo, Y. Y.; Li, G. H. Self-assembly of noble metallic spherical aggregates from monodisperse nanoparticles: Their synthesis and pronounced SERS and catalytic properties. J. Mater. Chem. A 2013, 1, 3362–3371.

26

Xiao, M.; Hu, Z. Y.; Wang, Z.; Li, Y. W.; Tormo, A. D.; Le Thomas, N.; Wang, B. X.; Gianneschi, N. C.; Shawkey, M. D.; Dhinojwala, A. Bioinspired bright noniridescent photonic melanin supraballs. Sci. Adv. 2017, 3, e1701151.

27

Lavorato, G. C.; Lima, E., Jr.; Tobia, D.; Fiorani, D.; Troiani, H. E.; Zysler, R. D.; Winkler, E. L. Size effects in bimagnetic CoO/CoFe2O4 core/shell nanoparticles. Nanotechnology 2014, 25, 355704.

28

Tüysüz, H.; Salabaş, E. L.; Bill, E.; Bongard, H.; Spliethoff, B.; Lehmann, C. W.; Schüth, F. Synthesis of hard magnetic ordered mesoporous Co3O4/CoFe2O4 nanocomposites. Chem. Mater. 2012, 24, 2493–2500.

29

Zhang, B. B.; Xu, J. C.; Wang, P. F.; Han, Y. B.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Yang, Y. T. et al. Interfaces exchange bias and magnetic properties of ordered CoFe2O4/Co3O4 nanocomposites. Appl. Surf. Sci. 2015, 355, 531–535.

30

Fan, S.; Wang, W.; Ke, H.; Rao, J. -C.; Zhou, Y. Bimagnetic urchin-like Co3O4/CoFe2O4 nanocomposites: Synthesis and magnetic properties. RSC Adv. 2016, 6, 97055–97062.

31

Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

32

López-Ortega, A.; Lottini, E.; de Julián Fernández, C.; Sangregorio, C. Exploring the magnetic properties of cobaltferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 2015, 27, 4048–4056.

33

Seo, W. S.; Shim, J. H.; Oh, S. J.; Lee, E. K.; Hur, N. H.; Park, J. T. Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals. J. Am. Chem. Soc. 2005, 127, 6188–6189.

34

Zhang, H. -T.; Chen, X. -H. Controlled synthesis and anomalous magnetic properties of relatively monodisperse CoO nanocrystals. Nanotechnology 2005, 16, 2288–2294.

35

Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 2016, 10, 2436–2446.

36

Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 2016, 116, 5338– 5431.

37

Park, J.; Porter, M. D.; Granger, M. C. Colloidally assembled zinc ferrite magnetic beads: Superparamagnetic labels with high magnetic moments for mr sensors. ACS Appl. Mater. Interfaces 2017, 9, 19569–19577.

38

Schuller, I. K.; Morales, R.; Batlle, X.; Nowak, U.; Güntherodt, G. Role of the antiferromagnetic bulk spins in exchange bias. J. Magn. Magn. Mater. 2016, 416, 2–9.

39

Herzer, G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 1990, 26, 1397–1402.

40

Lavorato, G. C.; Peddis, D.; Lima, E., Jr.; Troiani, H. E.; Agostinelli, E.; Fiorani, D.; Zysler, R. D.; Winkler, E. L. Magnetic interactions and energy barrier enhancement in core/shell bimagnetic nanoparticles. J. Phys. Chem. C 2015, 119, 15755–15762.

41

Debnath, B.; Bansal, A.; Salunke, H. G.; Sadhu, A.; Bhattacharyya, S. Enhancement of magnetization through interface exchange interactions of confined NiO nanoparticles within the mesopores of CoFe2O4. J. Phys. Chem. C 2016, 120, 5523–5533.

42

Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Fuertes, A. B.; Barquín, L. F.; Fernández, J. R.; de Pedro, I.; Fdez-Gubieda, M. L.; Alonso, J.; Olivi, L. et al. Interplay between microstructure and magnetism in NiO nanoparticles: Breakdown of the antiferromagnetic order. Nanoscale 2014, 6, 457–465.

43

Lavorato, G. C.; Lima, E., Jr.; Troiani, H. E.; Zysler, R. D.; Winkler, E. L. Tuning the coercivity and exchange bias by controlling the interface coupling in bimagnetic core/shell nanoparticles. Nanoscale 2017, 9, 10240–10247.

44

Balasubramanian, B.; Mukherjee, P.; Skomski, R.; Manchanda, P.; Das, B.; Sellmyer, D. J. Magnetic nanostructuring and overcoming brown's paradox to realize extraordinary high-temperature energy products. Sci. Rep. 2014, 4, 6265.

45

Brown, W. F., Jr. Virtues and weaknesses of the domain concept. Rev. Mod. Phys. 1945, 17, 15–19.

46

Kneller, E. F.; Hawig, R. The exchange-spring magnet: A new material principle for permanent magnets. IEEE Trans. Magn. 1991, 27, 3588–3560.

47

Shtrikman, S.; Treves, D. Micromagnctics. In Magnetism; Rado, G. T.; Suhl, H., Eds.; Academic Press: New York, 1963; pp 271–350.

48

Wu, M.; Zhang, D.; Zeng, Y. Y.; Wu, L. J.; Liu, X. L.; Liu, J. F. Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy. Nanotechnology 2015, 26, 115102.

49

Peddis, D.; Orrù, F.; Ardu, A.; Cannas, C.; Musinu, A.; Piccaluga, G. Interparticle interactions and magnetic anisotropy in cobalt ferrite nanoparticles: Influence of molecular coating. Chem. Mater. 2012, 24, 1062–1071.

File
12274_2018_2000_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2017
Revised: 19 December 2017
Accepted: 19 January 2018
Published: 09 February 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors acknowledge generous support from the Office of Naval Research Young Investigator Award N00014-16-1-2917. The authors also thank National Center for Microscopy and Imaging Research (NCMIR) at UCSD for TEM characterization.

Return